close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 3809

Last change on this file since 3809 was 3809, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 21.7 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :copy)
24 (:export "MONOM"
25 "TERM"
26 "EXPONENT"
27 "MONOM-DIMENSION"
28 "MONOM-EXPONENTS"
29 "UNIVERSAL-EQUALP"
30 "MONOM-ELT"
31 "TOTAL-DEGREE"
32 "SUGAR"
33 "MULTIPLY-BY"
34 "DIVIDE-BY"
35 "DIVIDE"
36 "MULTIPLY-2"
37 "MULTIPLY"
38 "DIVIDES-P"
39 "DIVIDES-LCM-P"
40 "LCM-DIVIDES-LCM-P"
41 "LCM-EQUAL-LCM-P"
42 "DIVISIBLE-BY-P"
43 "REL-PRIME-P"
44 "UNIVERSAL-LCM"
45 "UNIVERSAL-GCD"
46 "DEPENDS-P"
47 "LEFT-TENSOR-PRODUCT-BY"
48 "RIGHT-TENSOR-PRODUCT-BY"
49 "LEFT-CONTRACT"
50 "MAKE-MONOM-VARIABLE"
51 "->LIST"
52 "LEX>"
53 "GRLEX>"
54 "REVLEX>"
55 "GREVLEX>"
56 "INVLEX>"
57 "REVERSE-MONOMIAL-ORDER"
58 "MAKE-ELIMINATION-ORDER-FACTORY"
59 "TERM-COEFF"
60 "UNARY-MINUS"
61 "UNIVERSAL-ZEROP")
62 (:documentation
63 "This package implements basic operations on monomials, including
64various monomial orders.
65
66DATA STRUCTURES: Conceptually, monomials can be represented as lists:
67
68 monom: (n1 n2 ... nk) where ni are non-negative integers
69
70However, lists may be implemented as other sequence types, so the
71flexibility to change the representation should be maintained in the
72code to use general operations on sequences whenever possible. The
73optimization for the actual representation should be left to
74declarations and the compiler.
75
76EXAMPLES: Suppose that variables are x and y. Then
77
78 Monom x*y^2 ---> (1 2) "))
79
80(in-package :monom)
81
82(proclaim '(optimize (speed 0) (space 0) (safety 3) (debug 0)))
83
84(deftype exponent ()
85 "Type of exponent in a monomial."
86 'fixnum)
87
88(defclass monom ()
89 ((exponents :initarg :exponents :accessor monom-exponents
90 :documentation "The powers of the variables."))
91 ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
92 ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
93 (:documentation
94 "Implements a monomial, i.e. a product of powers
95of variables, like X*Y^2."))
96
97(defmethod print-object ((self monom) stream)
98 (print-unreadable-object (self stream :type t :identity t)
99 (with-accessors ((exponents monom-exponents))
100 self
101 (format stream "EXPONENTS=~A"
102 exponents))))
103
104(defmethod initialize-instance :after ((self monom)
105 &key
106 (dimension 0 dimension-supplied-p)
107 (exponents nil exponents-supplied-p)
108 (exponent 0)
109 &allow-other-keys
110 )
111 "The following INITIALIZE-INSTANCE method allows instance initialization
112of a MONOM in a style similar to MAKE-ARRAY, e.g.:
113
114 (MAKE-INSTANCE 'MONOM :EXPONENTS '(1 2 3)) --> #<MONOM EXPONENTS=#(1 2 3)>
115 (MAKE-INSTANCE 'MONOM :DIMENSION 3) --> #<MONOM EXPONENTS=#(0 0 0)>
116 (MAKE-INSTANCE 'MONOM :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)>
117
118If both DIMENSION and EXPONENTS are supplied, they must be compatible,
119i.e. the length of EXPONENTS must be equal DIMENSION. If EXPONENTS
120is not supplied, a monom with repeated value EXPONENT is created.
121By default EXPONENT is 0, which results in a constant monomial.
122"
123 (cond
124 (exponents-supplied-p
125 (when (and dimension-supplied-p
126 (/= dimension (length exponents)))
127 (error "EXPONENTS (~A) must have supplied length DIMENSION (~A)"
128 exponents dimension))
129 (let ((dim (length exponents)))
130 (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
131 (dimension-supplied-p
132 ;; when all exponents are to be identical
133 (setf (slot-value self 'exponents) (make-array (list dimension)
134 :initial-element exponent
135 :element-type 'exponent)))
136 (t
137 (error "Initarg DIMENSION or EXPONENTS must be supplied."))))
138
139(defgeneric monom-dimension (self)
140 (:method ((self monom))
141 (length (monom-exponents self))))
142
143(defgeneric universal-equalp (object1 object2)
144 (:documentation "Returns T iff OBJECT1 and OBJECT2 are equal.")
145 (:method ((object1 cons) (object2 cons)) (every #'universal-equalp object1 object2))
146 (:method ((object1 number) (object2 number)) (= object1 object2))
147 (:method ((m1 monom) (m2 monom))
148 "Returns T iff monomials M1 and M2 have identical EXPONENTS."
149 (equalp (monom-exponents m1) (monom-exponents m2))))
150
151(defgeneric monom-elt (m index)
152 (:documentation "Return the power in the monomial M of variable number INDEX.")
153 (:method ((m monom) index)
154 "Return the power in the monomial M of variable number INDEX."
155 (with-slots (exponents)
156 m
157 (elt exponents index))))
158
159(defgeneric (setf monom-elt) (new-value m index)
160 (:documentation "Set the power in the monomial M of variable number INDEX.")
161 (:method (new-value (m monom) index)
162 (with-slots (exponents)
163 m
164 (setf (elt exponents index) new-value))))
165
166(defgeneric total-degree (m &optional start end)
167 (:documentation "Return the total degree of a monomoal M. Optinally, a range
168of variables may be specified with arguments START and END.")
169 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
170 (declare (type fixnum start end))
171 (with-slots (exponents)
172 m
173 (reduce #'+ exponents :start start :end end))))
174
175(defgeneric sugar (m &optional start end)
176 (:documentation "Return the sugar of a monomial M. Optinally, a range
177of variables may be specified with arguments START and END.")
178 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
179 (declare (type fixnum start end))
180 (total-degree m start end)))
181
182(defgeneric multiply-by (self other)
183 (:documentation "Multiply SELF by OTHER, return SELF.")
184 (:method ((self number) (other number)) (* self other))
185 (:method ((self monom) (other monom))
186 (with-slots ((exponents1 exponents))
187 self
188 (with-slots ((exponents2 exponents))
189 other
190 (unless (= (length exponents1) (length exponents2))
191 (error "Incompatible dimensions"))
192 (map-into exponents1 #'+ exponents1 exponents2)))
193 self)
194 (:method ((self number) (other term))
195 (reinitialize-instance other :coeff (multiply self (term-coeff other)))))
196
197(defgeneric divide-by (self other)
198 (:documentation "Divide SELF by OTHER, return SELF.")
199 (:method ((self number) (other number)) (/ self other))
200 (:method ((self monom) (other monom))
201 (with-slots ((exponents1 exponents))
202 self
203 (with-slots ((exponents2 exponents))
204 other
205 (unless (= (length exponents1) (length exponents2))
206 (error "divide-by: Incompatible dimensions."))
207 (unless (every #'>= exponents1 exponents2)
208 (error "divide-by: Negative power would result."))
209 (map-into exponents1 #'- exponents1 exponents2)))
210 self)
211 (:method ((self term) (other number))
212 (reinitialize-instance self :coeff (divide (term-coeff self) other))))
213
214(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
215 "An :AROUND method of COPY-INSTANCE. It replaces
216exponents with a fresh copy of the sequence."
217 (declare (ignore object initargs))
218 (let ((copy (call-next-method)))
219 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
220 copy))
221
222(defun multiply-2 (object1 object2)
223 "Multiply OBJECT1 by OBJECT2"
224 (multiply-by (copy-instance object1) (copy-instance object2)))
225
226(defun multiply (&rest factors)
227 "Non-destructively multiply list FACTORS."
228 (cond ((endp factors) 1)
229 ((endp (rest factors)) (first factors))
230 (t (reduce #'multiply-2 factors :initial-value 1))))
231
232(defun divide (numerator &rest denominators)
233 "Non-destructively divide object NUMERATOR by product of DENOMINATORS."
234 (divide-by (copy-instance numerator) (apply #'multiply denominators)))
235
236(defgeneric divides-p (object1 object2)
237 (:documentation "Returns T if OBJECT1 divides OBJECT2.")
238 (:method ((m1 monom) (m2 monom))
239 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
240 (with-slots ((exponents1 exponents))
241 m1
242 (with-slots ((exponents2 exponents))
243 m2
244 (every #'<= exponents1 exponents2)))))
245
246(defgeneric divides-lcm-p (object1 object2 object3)
247 (:documentation "Returns T if OBJECT1 divides LCM(OBJECT2,OBJECT3), NIL otherwise.")
248 (:method ((m1 monom) (m2 monom) (m3 monom))
249 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
250 (with-slots ((exponents1 exponents))
251 m1
252 (with-slots ((exponents2 exponents))
253 m2
254 (with-slots ((exponents3 exponents))
255 m3
256 (every #'(lambda (x y z) (<= x (max y z)))
257 exponents1 exponents2 exponents3))))))
258
259(defgeneric lcm-divides-lcm-p (object1 object2 object3 object4)
260 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
261 "Returns T if monomial LCM(M1,M2) divides LCM(M3,M4), NIL otherwise."
262 (with-slots ((exponents1 exponents))
263 m1
264 (with-slots ((exponents2 exponents))
265 m2
266 (with-slots ((exponents3 exponents))
267 m3
268 (with-slots ((exponents4 exponents))
269 m4
270 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
271 exponents1 exponents2 exponents3 exponents4)))))))
272
273(defgeneric monom-lcm-equal-lcm-p (object1 object2 object3 object4)
274 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
275 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
276 (with-slots ((exponents1 exponents))
277 m1
278 (with-slots ((exponents2 exponents))
279 m2
280 (with-slots ((exponents3 exponents))
281 m3
282 (with-slots ((exponents4 exponents))
283 m4
284 (every
285 #'(lambda (x y z w) (= (max x y) (max z w)))
286 exponents1 exponents2 exponents3 exponents4)))))))
287
288(defgeneric divisible-by-p (object1 object2)
289 (:documentation "Return T if OBJECT1 is divisible by OBJECT2.")
290 (:method ((m1 monom) (m2 monom))
291 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
292 (with-slots ((exponents1 exponents))
293 m1
294 (with-slots ((exponents2 exponents))
295 m2
296 (every #'>= exponents1 exponents2)))))
297
298(defgeneric rel-prime-p (object1 object2)
299 (:documentation "Returns T if objects OBJECT1 and OBJECT2 are relatively prime.")
300 (:method ((m1 monom) (m2 monom))
301 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
302 (with-slots ((exponents1 exponents))
303 m1
304 (with-slots ((exponents2 exponents))
305 m2
306 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2)))))
307
308(defgeneric universal-lcm (object1 object2)
309 (:documentation "Returns the multiple of objects OBJECT1 and OBJECT2.")
310 (:method ((m1 monom) (m2 monom))
311 "Returns least common multiple of monomials M1 and M2."
312 (with-slots ((exponents1 exponents))
313 m1
314 (with-slots ((exponents2 exponents))
315 m2
316 (let* ((exponents (copy-seq exponents1)))
317 (map-into exponents #'max exponents1 exponents2)
318 (make-instance 'monom :exponents exponents))))))
319
320
321(defgeneric universal-gcd (object1 object2)
322 (:documentation "Returns GCD of objects OBJECT1 and OBJECT2")
323 (:method ((object1 number) (object2 number)) (gcd object1 object2))
324 (:method ((m1 monom) (m2 monom))
325 "Returns greatest common divisor of monomials M1 and M2."
326 (with-slots ((exponents1 exponents))
327 m1
328 (with-slots ((exponents2 exponents))
329 m2
330 (let* ((exponents (copy-seq exponents1)))
331 (map-into exponents #'min exponents1 exponents2)
332 (make-instance 'monom :exponents exponents))))))
333
334(defgeneric depends-p (object k)
335 (:documentation "Returns T iff object OBJECT depends on variable K.")
336 (:method ((m monom) k)
337 "Return T if the monomial M depends on variable number K."
338 (declare (type fixnum k))
339 (with-slots (exponents)
340 m
341 (plusp (elt exponents k)))))
342
343(defgeneric left-tensor-product-by (self other)
344 (:documentation "Returns a tensor product SELF by OTHER, stored into
345 SELF. Return SELF.")
346 (:method ((self monom) (other monom))
347 (with-slots ((exponents1 exponents))
348 self
349 (with-slots ((exponents2 exponents))
350 other
351 (setf exponents1 (concatenate 'vector exponents2 exponents1))))
352 self))
353
354(defgeneric right-tensor-product-by (self other)
355 (:documentation "Returns a tensor product of OTHER by SELF, stored
356 into SELF. Returns SELF.")
357 (:method ((self monom) (other monom))
358 (with-slots ((exponents1 exponents))
359 self
360 (with-slots ((exponents2 exponents))
361 other
362 (setf exponents1 (concatenate 'vector exponents1 exponents2))))
363 self))
364
365(defgeneric left-contract (self k)
366 (:documentation "Drop the first K variables in object SELF.")
367 (:method ((self monom) k)
368 "Drop the first K variables in monomial M."
369 (declare (fixnum k))
370 (with-slots (exponents)
371 self
372 (setf exponents (subseq exponents k)))
373 self))
374
375(defun make-monom-variable (nvars pos &optional (power 1)
376 &aux (m (make-instance 'monom :dimension nvars)))
377 "Construct a monomial in the polynomial ring
378RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
379which represents a single variable. It assumes number of variables
380NVARS and the variable is at position POS. Optionally, the variable
381may appear raised to power POWER. "
382 (declare (type fixnum nvars pos power) (type monom m))
383 (with-slots (exponents)
384 m
385 (setf (elt exponents pos) power)
386 m))
387
388(defgeneric ->list (object)
389 (:method ((m monom))
390 "A human-readable representation of a monomial M as a list of exponents."
391 (coerce (monom-exponents m) 'list)))
392
393;; pure lexicographic
394(defgeneric lex> (p q &optional start end)
395 (:documentation "Return T if P>Q with respect to lexicographic
396order, otherwise NIL. The second returned value is T if P=Q,
397otherwise it is NIL.")
398 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
399 (declare (type fixnum start end))
400 (do ((i start (1+ i)))
401 ((>= i end) (values nil t))
402 (cond
403 ((> (monom-elt p i) (monom-elt q i))
404 (return-from lex> (values t nil)))
405 ((< (monom-elt p i) (monom-elt q i))
406 (return-from lex> (values nil nil)))))))
407
408;; total degree order, ties broken by lexicographic
409(defgeneric grlex> (p q &optional start end)
410 (:documentation "Return T if P>Q with respect to graded
411lexicographic order, otherwise NIL. The second returned value is T if
412P=Q, otherwise it is NIL.")
413 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
414 (declare (type monom p q) (type fixnum start end))
415 (let ((d1 (total-degree p start end))
416 (d2 (total-degree q start end)))
417 (declare (type fixnum d1 d2))
418 (cond
419 ((> d1 d2) (values t nil))
420 ((< d1 d2) (values nil nil))
421 (t
422 (lex> p q start end))))))
423
424;; reverse lexicographic
425(defgeneric revlex> (p q &optional start end)
426 (:documentation "Return T if P>Q with respect to reverse
427lexicographic order, NIL otherwise. The second returned value is T if
428P=Q, otherwise it is NIL. This is not and admissible monomial order
429because some sets do not have a minimal element. This order is useful
430in constructing other orders.")
431 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
432 (declare (type fixnum start end))
433 (do ((i (1- end) (1- i)))
434 ((< i start) (values nil t))
435 (declare (type fixnum i))
436 (cond
437 ((< (monom-elt p i) (monom-elt q i))
438 (return-from revlex> (values t nil)))
439 ((> (monom-elt p i) (monom-elt q i))
440 (return-from revlex> (values nil nil)))))))
441
442
443;; total degree, ties broken by reverse lexicographic
444(defgeneric grevlex> (p q &optional start end)
445 (:documentation "Return T if P>Q with respect to graded reverse
446lexicographic order, NIL otherwise. The second returned value is T if
447P=Q, otherwise it is NIL.")
448 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
449 (declare (type fixnum start end))
450 (let ((d1 (total-degree p start end))
451 (d2 (total-degree q start end)))
452 (declare (type fixnum d1 d2))
453 (cond
454 ((> d1 d2) (values t nil))
455 ((< d1 d2) (values nil nil))
456 (t
457 (revlex> p q start end))))))
458
459(defgeneric invlex> (p q &optional start end)
460 (:documentation "Return T if P>Q with respect to inverse
461lexicographic order, NIL otherwise The second returned value is T if
462P=Q, otherwise it is NIL.")
463 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
464 (declare (type fixnum start end))
465 (do ((i (1- end) (1- i)))
466 ((< i start) (values nil t))
467 (declare (type fixnum i))
468 (cond
469 ((> (monom-elt p i) (monom-elt q i))
470 (return-from invlex> (values t nil)))
471 ((< (monom-elt p i) (monom-elt q i))
472 (return-from invlex> (values nil nil)))))))
473
474(defun reverse-monomial-order (order)
475 "Create the inverse monomial order to the given monomial order ORDER."
476 #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
477 (declare (type monom p q) (type fixnum start end))
478 (funcall order q p start end)))
479
480;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
481;;
482;; Order making functions
483;;
484;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
485
486;; This returns a closure with the same signature
487;; as all orders such as #'LEX>.
488(defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
489 "It constructs an elimination order used for the 1-st elimination ideal,
490i.e. for eliminating the first variable. Thus, the order compares the degrees of the
491first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
492 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
493 (declare (type monom p q) (type fixnum start end))
494 (cond
495 ((> (monom-elt p start) (monom-elt q start))
496 (values t nil))
497 ((< (monom-elt p start) (monom-elt q start))
498 (values nil nil))
499 (t
500 (funcall secondary-elimination-order p q (1+ start) end)))))
501
502;; This returns a closure which is called with an integer argument.
503;; The result is *another closure* with the same signature as all
504;; orders such as #'LEX>.
505(defun make-elimination-order-factory (&optional
506 (primary-elimination-order #'lex>)
507 (secondary-elimination-order #'lex>))
508 "Return a function with a single integer argument K. This should be
509the number of initial K variables X[0],X[1],...,X[K-1], which precede
510remaining variables. The call to the closure creates a predicate
511which compares monomials according to the K-th elimination order. The
512monomial orders PRIMARY-ELIMINATION-ORDER and
513SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
514remaining variables, respectively, with ties broken by lexicographical
515order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
516which indicates that the first K variables appear with identical
517powers, then the result is that of a call to
518SECONDARY-ELIMINATION-ORDER applied to the remaining variables
519X[K],X[K+1],..."
520 #'(lambda (k)
521 (cond
522 ((<= k 0)
523 (error "K must be at least 1"))
524 ((= k 1)
525 (make-elimination-order-factory-1 secondary-elimination-order))
526 (t
527 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
528 (declare (type monom p q) (type fixnum start end))
529 (multiple-value-bind (primary equal)
530 (funcall primary-elimination-order p q start k)
531 (if equal
532 (funcall secondary-elimination-order p q k end)
533 (values primary nil))))))))
534
535(defclass term (monom)
536 ((coeff :initarg :coeff :accessor term-coeff))
537 (:default-initargs :coeff nil)
538 (:documentation "Implements a term, i.e. a product of a scalar
539and powers of some variables, such as 5*X^2*Y^3."))
540
541(defmethod update-instance-for-different-class :before ((old monom) (new term) &key (coeff 1))
542 "Converts OLD of class MONOM to a NEW of class TERM, initializing coefficient to COEFF."
543 (reinitialize-instance new :coeff coeff))
544
545(defmethod print-object ((self term) stream)
546 (print-unreadable-object (self stream :type t :identity t)
547 (with-accessors ((exponents monom-exponents)
548 (coeff term-coeff))
549 self
550 (format stream "EXPONENTS=~A COEFF=~A"
551 exponents coeff))))
552
553(defmethod universal-equalp ((term1 term) (term2 term))
554 "Returns T if TERM1 and TERM2 are equal as MONOM, and coefficients
555are UNIVERSAL-EQUALP."
556 (and (call-next-method)
557 (universal-equalp (term-coeff term1) (term-coeff term2))))
558
559(defmethod update-instance-for-different-class :after ((old monom) (new term) &key)
560 (setf (term-coeff new) 1))
561
562(defmethod multiply-by :before ((self term) (other term))
563 "Destructively multiply terms SELF and OTHER and store the result into SELF.
564It returns SELF."
565 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
566
567(defmethod left-tensor-product-by :before ((self term) (other term))
568 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
569
570(defmethod right-tensor-product-by :before ((self term) (other term))
571 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
572
573(defmethod divide-by :before ((self term) (other term))
574 (setf (term-coeff self) (divide-by (term-coeff self) (term-coeff other))))
575
576(defgeneric unary-minus (self)
577 (:documentation "Negate object SELF and return it.")
578 (:method ((self number)) (- self))
579 (:method ((self term))
580 (setf (term-coeff self) (unary-minus (term-coeff self)))
581 self))
582
583(defgeneric universal-zerop (self)
584 (:documentation "Return T iff SELF is zero.")
585 (:method ((self number)) (zerop self))
586 (:method ((self term))
587 (universal-zerop (term-coeff self))))
Note: See TracBrowser for help on using the repository browser.