close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 3810

Last change on this file since 3810 was 3810, checked in by Marek Rychlik, 8 years ago

* empty log message *

File size: 21.8 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :copy)
24 (:export "MONOM"
25 "TERM"
26 "EXPONENT"
27 "MONOM-DIMENSION"
28 "MONOM-EXPONENTS"
29 "UNIVERSAL-EQUALP"
30 "MONOM-ELT"
31 "TOTAL-DEGREE"
32 "SUGAR"
33 "MULTIPLY-BY"
34 "DIVIDE-BY"
35 "DIVIDE"
36 "MULTIPLY-2"
37 "MULTIPLY"
38 "DIVIDES-P"
39 "DIVIDES-LCM-P"
40 "LCM-DIVIDES-LCM-P"
41 "LCM-EQUAL-LCM-P"
42 "DIVISIBLE-BY-P"
43 "REL-PRIME-P"
44 "UNIVERSAL-LCM"
45 "UNIVERSAL-GCD"
46 "DEPENDS-P"
47 "LEFT-TENSOR-PRODUCT-BY"
48 "RIGHT-TENSOR-PRODUCT-BY"
49 "LEFT-CONTRACT"
50 "MAKE-MONOM-VARIABLE"
51 "->LIST"
52 "LEX>"
53 "GRLEX>"
54 "REVLEX>"
55 "GREVLEX>"
56 "INVLEX>"
57 "REVERSE-MONOMIAL-ORDER"
58 "MAKE-ELIMINATION-ORDER-FACTORY"
59 "TERM-COEFF"
60 "UNARY-MINUS"
61 "UNIVERSAL-ZEROP")
62 (:documentation
63 "This package implements basic operations on monomials, including
64various monomial orders.
65
66DATA STRUCTURES: Conceptually, monomials can be represented as lists:
67
68 monom: (n1 n2 ... nk) where ni are non-negative integers
69
70However, lists may be implemented as other sequence types, so the
71flexibility to change the representation should be maintained in the
72code to use general operations on sequences whenever possible. The
73optimization for the actual representation should be left to
74declarations and the compiler.
75
76EXAMPLES: Suppose that variables are x and y. Then
77
78 Monom x*y^2 ---> (1 2) "))
79
80(in-package :monom)
81
82(proclaim '(optimize (speed 0) (space 0) (safety 3) (debug 0)))
83
84(deftype exponent ()
85 "Type of exponent in a monomial."
86 'fixnum)
87
88(defclass monom ()
89 ((exponents :initarg :exponents :accessor monom-exponents
90 :documentation "The powers of the variables."))
91 ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
92 ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
93 (:documentation
94 "Implements a monomial, i.e. a product of powers
95of variables, like X*Y^2."))
96
97(defmethod print-object ((self monom) stream)
98 (print-unreadable-object (self stream :type t :identity t)
99 (with-accessors ((exponents monom-exponents))
100 self
101 (format stream "EXPONENTS=~A"
102 exponents))))
103
104(defmethod initialize-instance :after ((self monom)
105 &key
106 (dimension 0 dimension-supplied-p)
107 (exponents nil exponents-supplied-p)
108 (exponent 0)
109 &allow-other-keys
110 )
111 "The following INITIALIZE-INSTANCE method allows instance initialization
112of a MONOM in a style similar to MAKE-ARRAY, e.g.:
113
114 (MAKE-INSTANCE 'MONOM :EXPONENTS '(1 2 3)) --> #<MONOM EXPONENTS=#(1 2 3)>
115 (MAKE-INSTANCE 'MONOM :DIMENSION 3) --> #<MONOM EXPONENTS=#(0 0 0)>
116 (MAKE-INSTANCE 'MONOM :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)>
117
118If both DIMENSION and EXPONENTS are supplied, they must be compatible,
119i.e. the length of EXPONENTS must be equal DIMENSION. If EXPONENTS
120is not supplied, a monom with repeated value EXPONENT is created.
121By default EXPONENT is 0, which results in a constant monomial.
122"
123 (cond
124 (exponents-supplied-p
125 (when (and dimension-supplied-p
126 (/= dimension (length exponents)))
127 (error "EXPONENTS (~A) must have supplied length DIMENSION (~A)"
128 exponents dimension))
129 (let ((dim (length exponents)))
130 (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
131 (dimension-supplied-p
132 ;; when all exponents are to be identical
133 (setf (slot-value self 'exponents) (make-array (list dimension)
134 :initial-element exponent
135 :element-type 'exponent)))
136 (t
137 (error "Initarg DIMENSION or EXPONENTS must be supplied."))))
138
139(defgeneric monom-dimension (self)
140 (:method ((self monom))
141 (length (monom-exponents self))))
142
143(defgeneric universal-equalp (object1 object2)
144 (:documentation "Returns T iff OBJECT1 and OBJECT2 are equal.")
145 (:method ((object1 cons) (object2 cons)) (every #'universal-equalp object1 object2))
146 (:method ((object1 number) (object2 number)) (= object1 object2))
147 (:method ((m1 monom) (m2 monom))
148 "Returns T iff monomials M1 and M2 have identical EXPONENTS."
149 (equalp (monom-exponents m1) (monom-exponents m2))))
150
151(defgeneric monom-elt (m index)
152 (:documentation "Return the power in the monomial M of variable number INDEX.")
153 (:method ((m monom) index)
154 "Return the power in the monomial M of variable number INDEX."
155 (with-slots (exponents)
156 m
157 (elt exponents index))))
158
159(defgeneric (setf monom-elt) (new-value m index)
160 (:documentation "Set the power in the monomial M of variable number INDEX.")
161 (:method (new-value (m monom) index)
162 (with-slots (exponents)
163 m
164 (setf (elt exponents index) new-value))))
165
166(defgeneric total-degree (m &optional start end)
167 (:documentation "Return the total degree of a monomoal M. Optinally, a range
168of variables may be specified with arguments START and END.")
169 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
170 (declare (type fixnum start end))
171 (with-slots (exponents)
172 m
173 (reduce #'+ exponents :start start :end end))))
174
175(defgeneric sugar (m &optional start end)
176 (:documentation "Return the sugar of a monomial M. Optinally, a range
177of variables may be specified with arguments START and END.")
178 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
179 (declare (type fixnum start end))
180 (total-degree m start end)))
181
182(defgeneric multiply-by (self other)
183 (:documentation "Multiply SELF by OTHER, return SELF.")
184 (:method ((self number) (other number)) (* self other))
185 (:method ((self monom) (other monom))
186 (with-slots ((exponents1 exponents))
187 self
188 (with-slots ((exponents2 exponents))
189 other
190 (unless (= (length exponents1) (length exponents2))
191 (error "Incompatible dimensions"))
192 (map-into exponents1 #'+ exponents1 exponents2)))
193 self)
194 (:method ((self number) (other term))
195 (reinitialize-instance other :coeff (multiply self (term-coeff other))))
196 (:method ((self term) (other number))
197 (reinitialize-instance self :coeff (multiply (term-coeff self) other))))
198
199(defgeneric divide-by (self other)
200 (:documentation "Divide SELF by OTHER, return SELF.")
201 (:method ((self number) (other number)) (/ self other))
202 (:method ((self monom) (other monom))
203 (with-slots ((exponents1 exponents))
204 self
205 (with-slots ((exponents2 exponents))
206 other
207 (unless (= (length exponents1) (length exponents2))
208 (error "divide-by: Incompatible dimensions."))
209 (unless (every #'>= exponents1 exponents2)
210 (error "divide-by: Negative power would result."))
211 (map-into exponents1 #'- exponents1 exponents2)))
212 self)
213 (:method ((self term) (other number))
214 (reinitialize-instance self :coeff (divide (term-coeff self) other))))
215
216(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
217 "An :AROUND method of COPY-INSTANCE. It replaces
218exponents with a fresh copy of the sequence."
219 (declare (ignore object initargs))
220 (let ((copy (call-next-method)))
221 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
222 copy))
223
224(defun multiply-2 (object1 object2)
225 "Multiply OBJECT1 by OBJECT2"
226 (multiply-by (copy-instance object1) (copy-instance object2)))
227
228(defun multiply (&rest factors)
229 "Non-destructively multiply list FACTORS."
230 (cond ((endp factors) 1)
231 ((endp (rest factors)) (first factors))
232 (t (reduce #'multiply-2 factors :initial-value 1))))
233
234(defun divide (numerator &rest denominators)
235 "Non-destructively divide object NUMERATOR by product of DENOMINATORS."
236 (divide-by (copy-instance numerator) (apply #'multiply denominators)))
237
238(defgeneric divides-p (object1 object2)
239 (:documentation "Returns T if OBJECT1 divides OBJECT2.")
240 (:method ((m1 monom) (m2 monom))
241 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
242 (with-slots ((exponents1 exponents))
243 m1
244 (with-slots ((exponents2 exponents))
245 m2
246 (every #'<= exponents1 exponents2)))))
247
248(defgeneric divides-lcm-p (object1 object2 object3)
249 (:documentation "Returns T if OBJECT1 divides LCM(OBJECT2,OBJECT3), NIL otherwise.")
250 (:method ((m1 monom) (m2 monom) (m3 monom))
251 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
252 (with-slots ((exponents1 exponents))
253 m1
254 (with-slots ((exponents2 exponents))
255 m2
256 (with-slots ((exponents3 exponents))
257 m3
258 (every #'(lambda (x y z) (<= x (max y z)))
259 exponents1 exponents2 exponents3))))))
260
261(defgeneric lcm-divides-lcm-p (object1 object2 object3 object4)
262 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
263 "Returns T if monomial LCM(M1,M2) divides LCM(M3,M4), NIL otherwise."
264 (with-slots ((exponents1 exponents))
265 m1
266 (with-slots ((exponents2 exponents))
267 m2
268 (with-slots ((exponents3 exponents))
269 m3
270 (with-slots ((exponents4 exponents))
271 m4
272 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
273 exponents1 exponents2 exponents3 exponents4)))))))
274
275(defgeneric monom-lcm-equal-lcm-p (object1 object2 object3 object4)
276 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
277 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
278 (with-slots ((exponents1 exponents))
279 m1
280 (with-slots ((exponents2 exponents))
281 m2
282 (with-slots ((exponents3 exponents))
283 m3
284 (with-slots ((exponents4 exponents))
285 m4
286 (every
287 #'(lambda (x y z w) (= (max x y) (max z w)))
288 exponents1 exponents2 exponents3 exponents4)))))))
289
290(defgeneric divisible-by-p (object1 object2)
291 (:documentation "Return T if OBJECT1 is divisible by OBJECT2.")
292 (:method ((m1 monom) (m2 monom))
293 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
294 (with-slots ((exponents1 exponents))
295 m1
296 (with-slots ((exponents2 exponents))
297 m2
298 (every #'>= exponents1 exponents2)))))
299
300(defgeneric rel-prime-p (object1 object2)
301 (:documentation "Returns T if objects OBJECT1 and OBJECT2 are relatively prime.")
302 (:method ((m1 monom) (m2 monom))
303 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
304 (with-slots ((exponents1 exponents))
305 m1
306 (with-slots ((exponents2 exponents))
307 m2
308 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2)))))
309
310(defgeneric universal-lcm (object1 object2)
311 (:documentation "Returns the multiple of objects OBJECT1 and OBJECT2.")
312 (:method ((m1 monom) (m2 monom))
313 "Returns least common multiple of monomials M1 and M2."
314 (with-slots ((exponents1 exponents))
315 m1
316 (with-slots ((exponents2 exponents))
317 m2
318 (let* ((exponents (copy-seq exponents1)))
319 (map-into exponents #'max exponents1 exponents2)
320 (make-instance 'monom :exponents exponents))))))
321
322
323(defgeneric universal-gcd (object1 object2)
324 (:documentation "Returns GCD of objects OBJECT1 and OBJECT2")
325 (:method ((object1 number) (object2 number)) (gcd object1 object2))
326 (:method ((m1 monom) (m2 monom))
327 "Returns greatest common divisor of monomials M1 and M2."
328 (with-slots ((exponents1 exponents))
329 m1
330 (with-slots ((exponents2 exponents))
331 m2
332 (let* ((exponents (copy-seq exponents1)))
333 (map-into exponents #'min exponents1 exponents2)
334 (make-instance 'monom :exponents exponents))))))
335
336(defgeneric depends-p (object k)
337 (:documentation "Returns T iff object OBJECT depends on variable K.")
338 (:method ((m monom) k)
339 "Return T if the monomial M depends on variable number K."
340 (declare (type fixnum k))
341 (with-slots (exponents)
342 m
343 (plusp (elt exponents k)))))
344
345(defgeneric left-tensor-product-by (self other)
346 (:documentation "Returns a tensor product SELF by OTHER, stored into
347 SELF. Return SELF.")
348 (:method ((self monom) (other monom))
349 (with-slots ((exponents1 exponents))
350 self
351 (with-slots ((exponents2 exponents))
352 other
353 (setf exponents1 (concatenate 'vector exponents2 exponents1))))
354 self))
355
356(defgeneric right-tensor-product-by (self other)
357 (:documentation "Returns a tensor product of OTHER by SELF, stored
358 into SELF. Returns SELF.")
359 (:method ((self monom) (other monom))
360 (with-slots ((exponents1 exponents))
361 self
362 (with-slots ((exponents2 exponents))
363 other
364 (setf exponents1 (concatenate 'vector exponents1 exponents2))))
365 self))
366
367(defgeneric left-contract (self k)
368 (:documentation "Drop the first K variables in object SELF.")
369 (:method ((self monom) k)
370 "Drop the first K variables in monomial M."
371 (declare (fixnum k))
372 (with-slots (exponents)
373 self
374 (setf exponents (subseq exponents k)))
375 self))
376
377(defun make-monom-variable (nvars pos &optional (power 1)
378 &aux (m (make-instance 'monom :dimension nvars)))
379 "Construct a monomial in the polynomial ring
380RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
381which represents a single variable. It assumes number of variables
382NVARS and the variable is at position POS. Optionally, the variable
383may appear raised to power POWER. "
384 (declare (type fixnum nvars pos power) (type monom m))
385 (with-slots (exponents)
386 m
387 (setf (elt exponents pos) power)
388 m))
389
390(defgeneric ->list (object)
391 (:method ((m monom))
392 "A human-readable representation of a monomial M as a list of exponents."
393 (coerce (monom-exponents m) 'list)))
394
395;; pure lexicographic
396(defgeneric lex> (p q &optional start end)
397 (:documentation "Return T if P>Q with respect to lexicographic
398order, otherwise NIL. The second returned value is T if P=Q,
399otherwise it is NIL.")
400 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
401 (declare (type fixnum start end))
402 (do ((i start (1+ i)))
403 ((>= i end) (values nil t))
404 (cond
405 ((> (monom-elt p i) (monom-elt q i))
406 (return-from lex> (values t nil)))
407 ((< (monom-elt p i) (monom-elt q i))
408 (return-from lex> (values nil nil)))))))
409
410;; total degree order, ties broken by lexicographic
411(defgeneric grlex> (p q &optional start end)
412 (:documentation "Return T if P>Q with respect to graded
413lexicographic order, otherwise NIL. The second returned value is T if
414P=Q, otherwise it is NIL.")
415 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
416 (declare (type monom p q) (type fixnum start end))
417 (let ((d1 (total-degree p start end))
418 (d2 (total-degree q start end)))
419 (declare (type fixnum d1 d2))
420 (cond
421 ((> d1 d2) (values t nil))
422 ((< d1 d2) (values nil nil))
423 (t
424 (lex> p q start end))))))
425
426;; reverse lexicographic
427(defgeneric revlex> (p q &optional start end)
428 (:documentation "Return T if P>Q with respect to reverse
429lexicographic order, NIL otherwise. The second returned value is T if
430P=Q, otherwise it is NIL. This is not and admissible monomial order
431because some sets do not have a minimal element. This order is useful
432in constructing other orders.")
433 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
434 (declare (type fixnum start end))
435 (do ((i (1- end) (1- i)))
436 ((< i start) (values nil t))
437 (declare (type fixnum i))
438 (cond
439 ((< (monom-elt p i) (monom-elt q i))
440 (return-from revlex> (values t nil)))
441 ((> (monom-elt p i) (monom-elt q i))
442 (return-from revlex> (values nil nil)))))))
443
444
445;; total degree, ties broken by reverse lexicographic
446(defgeneric grevlex> (p q &optional start end)
447 (:documentation "Return T if P>Q with respect to graded reverse
448lexicographic order, NIL otherwise. The second returned value is T if
449P=Q, otherwise it is NIL.")
450 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
451 (declare (type fixnum start end))
452 (let ((d1 (total-degree p start end))
453 (d2 (total-degree q start end)))
454 (declare (type fixnum d1 d2))
455 (cond
456 ((> d1 d2) (values t nil))
457 ((< d1 d2) (values nil nil))
458 (t
459 (revlex> p q start end))))))
460
461(defgeneric invlex> (p q &optional start end)
462 (:documentation "Return T if P>Q with respect to inverse
463lexicographic order, NIL otherwise The second returned value is T if
464P=Q, otherwise it is NIL.")
465 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
466 (declare (type fixnum start end))
467 (do ((i (1- end) (1- i)))
468 ((< i start) (values nil t))
469 (declare (type fixnum i))
470 (cond
471 ((> (monom-elt p i) (monom-elt q i))
472 (return-from invlex> (values t nil)))
473 ((< (monom-elt p i) (monom-elt q i))
474 (return-from invlex> (values nil nil)))))))
475
476(defun reverse-monomial-order (order)
477 "Create the inverse monomial order to the given monomial order ORDER."
478 #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
479 (declare (type monom p q) (type fixnum start end))
480 (funcall order q p start end)))
481
482;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
483;;
484;; Order making functions
485;;
486;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
487
488;; This returns a closure with the same signature
489;; as all orders such as #'LEX>.
490(defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
491 "It constructs an elimination order used for the 1-st elimination ideal,
492i.e. for eliminating the first variable. Thus, the order compares the degrees of the
493first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
494 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
495 (declare (type monom p q) (type fixnum start end))
496 (cond
497 ((> (monom-elt p start) (monom-elt q start))
498 (values t nil))
499 ((< (monom-elt p start) (monom-elt q start))
500 (values nil nil))
501 (t
502 (funcall secondary-elimination-order p q (1+ start) end)))))
503
504;; This returns a closure which is called with an integer argument.
505;; The result is *another closure* with the same signature as all
506;; orders such as #'LEX>.
507(defun make-elimination-order-factory (&optional
508 (primary-elimination-order #'lex>)
509 (secondary-elimination-order #'lex>))
510 "Return a function with a single integer argument K. This should be
511the number of initial K variables X[0],X[1],...,X[K-1], which precede
512remaining variables. The call to the closure creates a predicate
513which compares monomials according to the K-th elimination order. The
514monomial orders PRIMARY-ELIMINATION-ORDER and
515SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
516remaining variables, respectively, with ties broken by lexicographical
517order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
518which indicates that the first K variables appear with identical
519powers, then the result is that of a call to
520SECONDARY-ELIMINATION-ORDER applied to the remaining variables
521X[K],X[K+1],..."
522 #'(lambda (k)
523 (cond
524 ((<= k 0)
525 (error "K must be at least 1"))
526 ((= k 1)
527 (make-elimination-order-factory-1 secondary-elimination-order))
528 (t
529 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
530 (declare (type monom p q) (type fixnum start end))
531 (multiple-value-bind (primary equal)
532 (funcall primary-elimination-order p q start k)
533 (if equal
534 (funcall secondary-elimination-order p q k end)
535 (values primary nil))))))))
536
537(defclass term (monom)
538 ((coeff :initarg :coeff :accessor term-coeff))
539 (:default-initargs :coeff nil)
540 (:documentation "Implements a term, i.e. a product of a scalar
541and powers of some variables, such as 5*X^2*Y^3."))
542
543(defmethod update-instance-for-different-class :before ((old monom) (new term) &key (coeff 1))
544 "Converts OLD of class MONOM to a NEW of class TERM, initializing coefficient to COEFF."
545 (reinitialize-instance new :coeff coeff))
546
547(defmethod print-object ((self term) stream)
548 (print-unreadable-object (self stream :type t :identity t)
549 (with-accessors ((exponents monom-exponents)
550 (coeff term-coeff))
551 self
552 (format stream "EXPONENTS=~A COEFF=~A"
553 exponents coeff))))
554
555(defmethod universal-equalp ((term1 term) (term2 term))
556 "Returns T if TERM1 and TERM2 are equal as MONOM, and coefficients
557are UNIVERSAL-EQUALP."
558 (and (call-next-method)
559 (universal-equalp (term-coeff term1) (term-coeff term2))))
560
561(defmethod update-instance-for-different-class :after ((old monom) (new term) &key)
562 (setf (term-coeff new) 1))
563
564(defmethod multiply-by :before ((self term) (other term))
565 "Destructively multiply terms SELF and OTHER and store the result into SELF.
566It returns SELF."
567 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
568
569(defmethod left-tensor-product-by :before ((self term) (other term))
570 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
571
572(defmethod right-tensor-product-by :before ((self term) (other term))
573 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
574
575(defmethod divide-by :before ((self term) (other term))
576 (setf (term-coeff self) (divide-by (term-coeff self) (term-coeff other))))
577
578(defgeneric unary-minus (self)
579 (:documentation "Negate object SELF and return it.")
580 (:method ((self number)) (- self))
581 (:method ((self term))
582 (setf (term-coeff self) (unary-minus (term-coeff self)))
583 self))
584
585(defgeneric universal-zerop (self)
586 (:documentation "Return T iff SELF is zero.")
587 (:method ((self number)) (zerop self))
588 (:method ((self term))
589 (universal-zerop (term-coeff self))))
Note: See TracBrowser for help on using the repository browser.