close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 3612

Last change on this file since 3612 was 3612, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 20.7 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :copy)
24 (:export "MONOM"
25 "TERM"
26 "EXPONENT"
27 "MONOM-DIMENSION"
28 "MONOM-EXPONENTS"
29 "UNIVERSAL-EQUALP"
30 "MONOM-ELT"
31 "TOTAL-DEGREE"
32 "SUGAR"
33 "MULTIPLY-BY"
34 "DIVIDE-BY"
35 "DIVIDE"
36 "MULTIPLY-2"
37 "MULTIPLY"
38 "DIVIDES-P"
39 "DIVIDES-LCM-P"
40 "LCM-DIVIDES-LCM-P"
41 "LCM-EQUAL-LCM-P"
42 "DIVISIBLE-BY-P"
43 "REL-PRIME-P"
44 "UNIVERSAL-LCM"
45 "UNIVERSAL-GCD"
46 "DEPENDS-P"
47 "LEFT-TENSOR-PRODUCT-BY"
48 "RIGHT-TENSOR-PRODUCT-BY"
49 "LEFT-CONTRACT"
50 "MAKE-MONOM-VARIABLE"
51 "->LIST"
52 "LEX>"
53 "GRLEX>"
54 "REVLEX>"
55 "GREVLEX>"
56 "INVLEX>"
57 "REVERSE-MONOMIAL-ORDER"
58 "MAKE-ELIMINATION-ORDER-FACTORY"
59 "UNARY-MINUS")
60 (:documentation
61 "This package implements basic operations on monomials, including
62various monomial orders.
63
64DATA STRUCTURES: Conceptually, monomials can be represented as lists:
65
66 monom: (n1 n2 ... nk) where ni are non-negative integers
67
68However, lists may be implemented as other sequence types, so the
69flexibility to change the representation should be maintained in the
70code to use general operations on sequences whenever possible. The
71optimization for the actual representation should be left to
72declarations and the compiler.
73
74EXAMPLES: Suppose that variables are x and y. Then
75
76 Monom x*y^2 ---> (1 2) "))
77
78(in-package :monom)
79
80(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
81
82(deftype exponent ()
83 "Type of exponent in a monomial."
84 'fixnum)
85
86(defclass monom ()
87 ((exponents :initarg :exponents :accessor monom-exponents
88 :documentation "The powers of the variables."))
89 ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
90 ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
91 (:documentation
92 "Implements a monomial, i.e. a product of powers
93of variables, like X*Y^2."))
94
95(defmethod print-object ((self monom) stream)
96 (print-unreadable-object (self stream :type t :identity t)
97 (with-accessors ((exponents monom-exponents))
98 self
99 (format stream "EXPONENTS=~A"
100 exponents))))
101
102(defmethod initialize-instance :after ((self monom)
103 &key
104 (dimension 0 dimension-supplied-p)
105 (exponents nil exponents-supplied-p)
106 (exponent 0)
107 &allow-other-keys
108 )
109 "The following INITIALIZE-INSTANCE method allows instance initialization
110of a MONOM in a style similar to MAKE-ARRAY, e.g.:
111
112 (MAKE-INSTANCE :EXPONENTS '(1 2 3)) --> #<MONOM EXPONENTS=#(1 2 3)>
113 (MAKE-INSTANCE :DIMENSION 3) --> #<MONOM EXPONENTS=#(0 0 0)>
114 (MAKE-INSTANCE :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)>
115
116If both DIMENSION and EXPONENTS are supplied, they must be compatible,
117i.e. the length of EXPONENTS must be equal DIMENSION. If EXPONENTS
118is not supplied, a monom with repeated value EXPONENT is created.
119By default EXPONENT is 0, which results in a constant monomial.
120"
121 (cond
122 (exponents-supplied-p
123 (when (and dimension-supplied-p
124 (/= dimension (length exponents)))
125 (error "EXPONENTS (~A) must have supplied length DIMENSION (~A)"
126 exponents dimension))
127 (let ((dim (length exponents)))
128 (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
129 (dimension-supplied-p
130 ;; when all exponents are to be identical
131 (setf (slot-value self 'exponents) (make-array (list dimension)
132 :initial-element exponent
133 :element-type 'exponent)))
134 (t
135 (error "Initarg DIMENSION or EXPONENTS must be supplied."))))
136
137(defgeneric monom-dimension (m)
138 (:method ((m monom))
139 (length (monom-exponents m))))
140
141(defgeneric universal-equalp (object1 object2)
142 (:documentation "Returns T iff OBJECT1 and OBJECT2 are equal.")
143 (:method ((object1 cons) (object2 cons)) (equalp object1 object2))
144 (:method ((object1 number) (object2 number)) (= object1 object2))
145 (:method ((m1 monom) (m2 monom))
146 "Returns T iff monomials M1 and M2 have identical EXPONENTS."
147 (equalp (monom-exponents m1) (monom-exponents m2))))
148
149(defgeneric monom-elt (m index)
150 (:documentation "Return the power in the monomial M of variable number INDEX.")
151 (:method ((m monom) index)
152 "Return the power in the monomial M of variable number INDEX."
153 (with-slots (exponents)
154 m
155 (elt exponents index))))
156
157(defgeneric (setf monom-elt) (new-value m index)
158 (:documentation "Set the power in the monomial M of variable number INDEX.")
159 (:method (new-value (m monom) index)
160 (with-slots (exponents)
161 m
162 (setf (elt exponents index) new-value))))
163
164(defgeneric total-degree (m &optional start end)
165 (:documentation "Return the total degree of a monomoal M. Optinally, a range
166of variables may be specified with arguments START and END.")
167 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
168 (declare (type fixnum start end))
169 (with-slots (exponents)
170 m
171 (reduce #'+ exponents :start start :end end))))
172
173(defgeneric sugar (m &optional start end)
174 (:documentation "Return the sugar of a monomial M. Optinally, a range
175of variables may be specified with arguments START and END.")
176 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
177 (declare (type fixnum start end))
178 (total-degree m start end)))
179
180(defgeneric multiply-by (self other)
181 (:documentation "Multiply SELF by OTHER, return SELF.")
182 (:method ((self number) (other number)) (* self other))
183 (:method ((self monom) (other monom))
184 (with-slots ((exponents1 exponents))
185 self
186 (with-slots ((exponents2 exponents))
187 other
188 (unless (= (length exponents1) (length exponents2))
189 (error "Incompatible dimensions"))
190 (map-into exponents1 #'+ exponents1 exponents2)))
191 self))
192
193(defgeneric divide-by (self other)
194 (:documentation "Divide SELF by OTHER, return SELF.")
195 (:method ((self monom) (other monom))
196 (with-slots ((exponents1 exponents))
197 self
198 (with-slots ((exponents2 exponents))
199 other
200 (unless (= (length exponents1) (length exponents2))
201 (error "divide-by: Incompatible dimensions."))
202 (unless (every #'>= exponents1 exponents2)
203 (error "divide-by: Negative power would result."))
204 (map-into exponents1 #'- exponents1 exponents2)))
205 self))
206
207(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
208 "An :AROUND method of COPY-INSTANCE. It replaces
209exponents with a fresh copy of the sequence."
210 (declare (ignore object initargs))
211 (let ((copy (call-next-method)))
212 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
213 copy))
214
215(defun multiply-2 (object1 object2)
216 "Multiply OBJECT1 by OBJECT2"
217 (multiply-by (copy-instance object1) (copy-instance object2)))
218
219(defun multiply (&rest factors)
220 "Non-destructively multiply list FACTORS."
221 (reduce #'multiply-2 factors))
222
223(defun divide (numerator &rest denominators)
224 "Non-destructively divide object NUMERATOR by product of DENOMINATORS."
225 (divide-by (copy-instance numerator) (multiply denominators)))
226
227(defgeneric divides-p (object1 object2)
228 (:documentation "Returns T if OBJECT1 divides OBJECT2.")
229 (:method ((m1 monom) (m2 monom))
230 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
231 (with-slots ((exponents1 exponents))
232 m1
233 (with-slots ((exponents2 exponents))
234 m2
235 (every #'<= exponents1 exponents2)))))
236
237(defgeneric divides-lcm-p (object1 object2 object3)
238 (:documentation "Returns T if OBJECT1 divides LCM(OBJECT2,OBJECT3), NIL otherwise.")
239 (:method ((m1 monom) (m2 monom) (m3 monom))
240 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
241 (with-slots ((exponents1 exponents))
242 m1
243 (with-slots ((exponents2 exponents))
244 m2
245 (with-slots ((exponents3 exponents))
246 m3
247 (every #'(lambda (x y z) (<= x (max y z)))
248 exponents1 exponents2 exponents3))))))
249
250(defgeneric lcm-divides-lcm-p (object1 object2 object3 object4)
251 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
252 "Returns T if monomial LCM(M1,M2) divides LCM(M3,M4), NIL otherwise."
253 (with-slots ((exponents1 exponents))
254 m1
255 (with-slots ((exponents2 exponents))
256 m2
257 (with-slots ((exponents3 exponents))
258 m3
259 (with-slots ((exponents4 exponents))
260 m4
261 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
262 exponents1 exponents2 exponents3 exponents4)))))))
263
264(defgeneric monom-lcm-equal-lcm-p (object1 object2 object3 object4)
265 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
266 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
267 (with-slots ((exponents1 exponents))
268 m1
269 (with-slots ((exponents2 exponents))
270 m2
271 (with-slots ((exponents3 exponents))
272 m3
273 (with-slots ((exponents4 exponents))
274 m4
275 (every
276 #'(lambda (x y z w) (= (max x y) (max z w)))
277 exponents1 exponents2 exponents3 exponents4)))))))
278
279(defgeneric divisible-by-p (object1 object2)
280 (:documentation "Return T if OBJECT1 is divisible by OBJECT2.")
281 (:method ((m1 monom) (m2 monom))
282 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
283 (with-slots ((exponents1 exponents))
284 m1
285 (with-slots ((exponents2 exponents))
286 m2
287 (every #'>= exponents1 exponents2)))))
288
289(defgeneric rel-prime-p (object1 object2)
290 (:documentation "Returns T if objects OBJECT1 and OBJECT2 are relatively prime.")
291 (:method ((m1 monom) (m2 monom))
292 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
293 (with-slots ((exponents1 exponents))
294 m1
295 (with-slots ((exponents2 exponents))
296 m2
297 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2)))))
298
299(defgeneric universal-lcm (object1 object2)
300 (:documentation "Returns the multiple of objects OBJECT1 and OBJECT2.")
301 (:method ((m1 monom) (m2 monom))
302 "Returns least common multiple of monomials M1 and M2."
303 (with-slots ((exponents1 exponents))
304 m1
305 (with-slots ((exponents2 exponents))
306 m2
307 (let* ((exponents (copy-seq exponents1)))
308 (map-into exponents #'max exponents1 exponents2)
309 (make-instance 'monom :exponents exponents))))))
310
311
312(defgeneric universal-gcd (object1 object2)
313 (:documentation "Returns GCD of objects OBJECT1 and OBJECT2")
314 (:method ((m1 monom) (m2 monom))
315 "Returns greatest common divisor of monomials M1 and M2."
316 (with-slots ((exponents1 exponents))
317 m1
318 (with-slots ((exponents2 exponents))
319 m2
320 (let* ((exponents (copy-seq exponents1)))
321 (map-into exponents #'min exponents1 exponents2)
322 (make-instance 'monom :exponents exponents))))))
323
324(defgeneric depends-p (object k)
325 (:documentation "Returns T iff object OBJECT depends on variable K.")
326 (:method ((m monom) k)
327 "Return T if the monomial M depends on variable number K."
328 (declare (type fixnum k))
329 (with-slots (exponents)
330 m
331 (plusp (elt exponents k)))))
332
333(defgeneric left-tensor-product-by (self other)
334 (:documentation "Returns a tensor product SELF by OTHER, stored into
335 SELF. Return SELF.")
336 (:method ((self monom) (other monom))
337 (with-slots ((exponents1 exponents))
338 self
339 (with-slots ((exponents2 exponents))
340 other
341 (setf exponents1 (concatenate 'vector exponents2 exponents1))))
342 self))
343
344(defgeneric right-tensor-product-by (self other)
345 (:documentation "Returns a tensor product of OTHER by SELF, stored
346 into SELF. Returns SELF.")
347 (:method ((self monom) (other monom))
348 (with-slots ((exponents1 exponents))
349 self
350 (with-slots ((exponents2 exponents))
351 other
352 (setf exponents1 (concatenate 'vector exponents1 exponents2))))
353 self))
354
355(defgeneric left-contract (self k)
356 (:documentation "Drop the first K variables in object SELF.")
357 (:method ((self monom) k)
358 "Drop the first K variables in monomial M."
359 (declare (fixnum k))
360 (with-slots (exponents)
361 self
362 (setf exponents (subseq exponents k)))
363 self))
364
365(defun make-monom-variable (nvars pos &optional (power 1)
366 &aux (m (make-instance 'monom :dimension nvars)))
367 "Construct a monomial in the polynomial ring
368RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
369which represents a single variable. It assumes number of variables
370NVARS and the variable is at position POS. Optionally, the variable
371may appear raised to power POWER. "
372 (declare (type fixnum nvars pos power) (type monom m))
373 (with-slots (exponents)
374 m
375 (setf (elt exponents pos) power)
376 m))
377
378(defgeneric ->list (object)
379 (:method ((m monom))
380 "A human-readable representation of a monomial M as a list of exponents."
381 (coerce (monom-exponents m) 'list)))
382
383;; pure lexicographic
384(defgeneric lex> (p q &optional start end)
385 (:documentation "Return T if P>Q with respect to lexicographic
386order, otherwise NIL. The second returned value is T if P=Q,
387otherwise it is NIL.")
388 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
389 (declare (type fixnum start end))
390 (do ((i start (1+ i)))
391 ((>= i end) (values nil t))
392 (cond
393 ((> (monom-elt p i) (monom-elt q i))
394 (return-from lex> (values t nil)))
395 ((< (monom-elt p i) (monom-elt q i))
396 (return-from lex> (values nil nil)))))))
397
398;; total degree order, ties broken by lexicographic
399(defgeneric grlex> (p q &optional start end)
400 (:documentation "Return T if P>Q with respect to graded
401lexicographic order, otherwise NIL. The second returned value is T if
402P=Q, otherwise it is NIL.")
403 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
404 (declare (type monom p q) (type fixnum start end))
405 (let ((d1 (total-degree p start end))
406 (d2 (total-degree q start end)))
407 (declare (type fixnum d1 d2))
408 (cond
409 ((> d1 d2) (values t nil))
410 ((< d1 d2) (values nil nil))
411 (t
412 (lex> p q start end))))))
413
414;; reverse lexicographic
415(defgeneric revlex> (p q &optional start end)
416 (:documentation "Return T if P>Q with respect to reverse
417lexicographic order, NIL otherwise. The second returned value is T if
418P=Q, otherwise it is NIL. This is not and admissible monomial order
419because some sets do not have a minimal element. This order is useful
420in constructing other orders.")
421 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
422 (declare (type fixnum start end))
423 (do ((i (1- end) (1- i)))
424 ((< i start) (values nil t))
425 (declare (type fixnum i))
426 (cond
427 ((< (monom-elt p i) (monom-elt q i))
428 (return-from revlex> (values t nil)))
429 ((> (monom-elt p i) (monom-elt q i))
430 (return-from revlex> (values nil nil)))))))
431
432
433;; total degree, ties broken by reverse lexicographic
434(defgeneric grevlex> (p q &optional start end)
435 (:documentation "Return T if P>Q with respect to graded reverse
436lexicographic order, NIL otherwise. The second returned value is T if
437P=Q, otherwise it is NIL.")
438 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
439 (declare (type fixnum start end))
440 (let ((d1 (total-degree p start end))
441 (d2 (total-degree q start end)))
442 (declare (type fixnum d1 d2))
443 (cond
444 ((> d1 d2) (values t nil))
445 ((< d1 d2) (values nil nil))
446 (t
447 (revlex> p q start end))))))
448
449(defgeneric invlex> (p q &optional start end)
450 (:documentation "Return T if P>Q with respect to inverse
451lexicographic order, NIL otherwise The second returned value is T if
452P=Q, otherwise it is NIL.")
453 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
454 (declare (type fixnum start end))
455 (do ((i (1- end) (1- i)))
456 ((< i start) (values nil t))
457 (declare (type fixnum i))
458 (cond
459 ((> (monom-elt p i) (monom-elt q i))
460 (return-from invlex> (values t nil)))
461 ((< (monom-elt p i) (monom-elt q i))
462 (return-from invlex> (values nil nil)))))))
463
464(defun reverse-monomial-order (order)
465 "Create the inverse monomial order to the given monomial order ORDER."
466 #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
467 (declare (type monom p q) (type fixnum start end))
468 (funcall order q p start end)))
469
470;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
471;;
472;; Order making functions
473;;
474;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
475
476;; This returns a closure with the same signature
477;; as all orders such as #'LEX>.
478(defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
479 "It constructs an elimination order used for the 1-st elimination ideal,
480i.e. for eliminating the first variable. Thus, the order compares the degrees of the
481first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
482 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
483 (declare (type monom p q) (type fixnum start end))
484 (cond
485 ((> (monom-elt p start) (monom-elt q start))
486 (values t nil))
487 ((< (monom-elt p start) (monom-elt q start))
488 (values nil nil))
489 (t
490 (funcall secondary-elimination-order p q (1+ start) end)))))
491
492;; This returns a closure which is called with an integer argument.
493;; The result is *another closure* with the same signature as all
494;; orders such as #'LEX>.
495(defun make-elimination-order-factory (&optional
496 (primary-elimination-order #'lex>)
497 (secondary-elimination-order #'lex>))
498 "Return a function with a single integer argument K. This should be
499the number of initial K variables X[0],X[1],...,X[K-1], which precede
500remaining variables. The call to the closure creates a predicate
501which compares monomials according to the K-th elimination order. The
502monomial orders PRIMARY-ELIMINATION-ORDER and
503SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
504remaining variables, respectively, with ties broken by lexicographical
505order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
506which indicates that the first K variables appear with identical
507powers, then the result is that of a call to
508SECONDARY-ELIMINATION-ORDER applied to the remaining variables
509X[K],X[K+1],..."
510 #'(lambda (k)
511 (cond
512 ((<= k 0)
513 (error "K must be at least 1"))
514 ((= k 1)
515 (make-elimination-order-factory-1 secondary-elimination-order))
516 (t
517 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
518 (declare (type monom p q) (type fixnum start end))
519 (multiple-value-bind (primary equal)
520 (funcall primary-elimination-order p q start k)
521 (if equal
522 (funcall secondary-elimination-order p q k end)
523 (values primary nil))))))))
524
525(defclass term (monom)
526 ((coeff :initarg :coeff :accessor term-coeff))
527 (:default-initargs :coeff nil)
528 (:documentation "Implements a term, i.e. a product of a scalar
529and powers of some variables, such as 5*X^2*Y^3."))
530
531(defmethod print-object ((self term) stream)
532 (print-unreadable-object (self stream :type t :identity t)
533 (with-accessors ((exponents monom-exponents)
534 (coeff term-coeff))
535 self
536 (format stream "EXPONENTS=~A COEFF=~A"
537 exponents coeff))))
538
539(defmethod universal-equalp ((term1 term) (term2 term))
540 "Returns T if TERM1 and TERM2 are equal as MONOM, and coefficients
541are UNIVERSAL-EQUALP."
542 (and (call-next-method)
543 (universal-equalp (term-coeff term1) (term-coeff term2))))
544
545(defmethod update-instance-for-different-class :after ((old monom) (new term) &key)
546 (setf (term-coeff new) 1))
547
548(defmethod multiply-by :before ((self term) (other term))
549 "Destructively multiply terms SELF and OTHER and store the result into SELF.
550It returns SELF."
551 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
552
553(defmethod left-tensor-product-by :before ((self term) (other term))
554 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
555
556(defmethod right-tensor-product-by :before ((self term) (other term))
557 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
558
559(defmethod divide-by :before ((self term) (other term))
560 (setf (term-coeff self) (divide-by (term-coeff self) (term-coeff other))))
561
562(defgeneric unary-minus (self)
563 (:method ((self term))
564 (setf (term-coeff self) (unary-minus (term-coeff self)))
565 self))
566
567(defgeneric universal-zerop (self)
568 (:method ((self term))
569 (universal-zerop (term-coeff self))))
Note: See TracBrowser for help on using the repository browser.