close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 3611

Last change on this file since 3611 was 3611, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 20.7 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :copy)
24 (:export "MONOM"
25 "TERM"
26 "EXPONENT"
27 "MONOM-DIMENSION"
28 "MONOM-EXPONENTS"
29 "UNIVERSAL-EQUALP"
30 "MONOM-ELT"
31 "TOTAL-DEGREE"
32 "SUGAR"
33 "MULTIPLY-BY"
34 "DIVIDE-BY"
35 "DIVIDE"
36 "MULTIPLY-2"
37 "MULTIPLY"
38 "DIVIDES-P"
39 "DIVIDES-LCM-P"
40 "LCM-DIVIDES-LCM-P"
41 "LCM-EQUAL-LCM-P"
42 "DIVISIBLE-BY-P"
43 "REL-PRIME-P"
44 "UNIVERSAL-LCM"
45 "UNIVERSAL-GCD"
46 "DEPENDS-P"
47 "LEFT-TENSOR-PRODUCT-BY"
48 "RIGHT-TENSOR-PRODUCT-BY"
49 "LEFT-CONTRACT"
50 "MAKE-MONOM-VARIABLE"
51 "->LIST"
52 "LEX>"
53 "GRLEX>"
54 "REVLEX>"
55 "GREVLEX>"
56 "INVLEX>"
57 "REVERSE-MONOMIAL-ORDER"
58 "MAKE-ELIMINATION-ORDER-FACTORY"
59 "UNARY-MINUS")
60 (:documentation
61 "This package implements basic operations on monomials, including
62various monomial orders.
63
64DATA STRUCTURES: Conceptually, monomials can be represented as lists:
65
66 monom: (n1 n2 ... nk) where ni are non-negative integers
67
68However, lists may be implemented as other sequence types, so the
69flexibility to change the representation should be maintained in the
70code to use general operations on sequences whenever possible. The
71optimization for the actual representation should be left to
72declarations and the compiler.
73
74EXAMPLES: Suppose that variables are x and y. Then
75
76 Monom x*y^2 ---> (1 2) "))
77
78(in-package :monom)
79
80(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
81
82(deftype exponent ()
83 "Type of exponent in a monomial."
84 'fixnum)
85
86(defclass monom ()
87 ((exponents :initarg :exponents :accessor monom-exponents
88 :documentation "The powers of the variables."))
89 ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
90 ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
91 (:documentation
92 "Implements a monomial, i.e. a product of powers
93of variables, like X*Y^2."))
94
95(defmethod print-object ((self monom) stream)
96 (print-unreadable-object (self stream :type t :identity t)
97 (with-accessors ((exponents monom-exponents))
98 self
99 (format stream "EXPONENTS=~A"
100 exponents))))
101
102(defmethod initialize-instance :after ((self monom)
103 &key
104 (dimension 0 dimension-supplied-p)
105 (exponents nil exponents-supplied-p)
106 (exponent 0)
107 &allow-other-keys
108 )
109 "The following INITIALIZE-INSTANCE method allows instance initialization
110of a MONOM in a style similar to MAKE-ARRAY, e.g.:
111
112 (MAKE-INSTANCE :EXPONENTS '(1 2 3)) --> #<MONOM EXPONENTS=#(1 2 3)>
113 (MAKE-INSTANCE :DIMENSION 3) --> #<MONOM EXPONENTS=#(0 0 0)>
114 (MAKE-INSTANCE :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)>
115
116If both DIMENSION and EXPONENTS are supplied, they must be compatible,
117i.e. the length of EXPONENTS must be equal DIMENSION. If EXPONENTS
118is not supplied, a monom with repeated value EXPONENT is created.
119By default EXPONENT is 0, which results in a constant monomial.
120"
121 (cond
122 (exponents-supplied-p
123 (when (and dimension-supplied-p
124 (/= dimension (length exponents)))
125 (error "EXPONENTS (~A) must have supplied length DIMENSION (~A)"
126 exponents dimension))
127 (let ((dim (length exponents)))
128 (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
129 (dimension-supplied-p
130 ;; when all exponents are to be identical
131 (setf (slot-value self 'exponents) (make-array (list dimension)
132 :initial-element exponent
133 :element-type 'exponent)))
134 (t
135 (error "Initarg DIMENSION or EXPONENTS must be supplied."))))
136
137(defgeneric monom-dimension (m)
138 (:method ((m monom))
139 (length (monom-exponents m))))
140
141(defgeneric universal-equalp (object1 object2)
142 (:documentation "Returns T iff OBJECT1 and OBJECT2 are equal.")
143 (:method ((object1 cons) (object2 cons)) (equalp object1 object2))
144 (:method ((object1 number) (object2 number)) (= object1 object2))
145 (:method ((m1 monom) (m2 monom))
146 "Returns T iff monomials M1 and M2 have identical EXPONENTS."
147 (equalp (monom-exponents m1) (monom-exponents m2))))
148
149(defgeneric monom-elt (m index)
150 (:documentation "Return the power in the monomial M of variable number INDEX.")
151 (:method ((m monom) index)
152 "Return the power in the monomial M of variable number INDEX."
153 (with-slots (exponents)
154 m
155 (elt exponents index))))
156
157(defgeneric (setf monom-elt) (new-value m index)
158 (:documentation "Set the power in the monomial M of variable number INDEX.")
159 (:method (new-value (m monom) index)
160 (with-slots (exponents)
161 m
162 (setf (elt exponents index) new-value))))
163
164(defgeneric total-degree (m &optional start end)
165 (:documentation "Return the total degree of a monomoal M. Optinally, a range
166of variables may be specified with arguments START and END.")
167 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
168 (declare (type fixnum start end))
169 (with-slots (exponents)
170 m
171 (reduce #'+ exponents :start start :end end))))
172
173(defgeneric sugar (m &optional start end)
174 (:documentation "Return the sugar of a monomial M. Optinally, a range
175of variables may be specified with arguments START and END.")
176 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
177 (declare (type fixnum start end))
178 (total-degree m start end)))
179
180(defgeneric multiply-by (self other)
181 (:documentation "Multiply SELF by OTHER, return SELF.")
182 (:method ((self monom) (other monom))
183 (with-slots ((exponents1 exponents))
184 self
185 (with-slots ((exponents2 exponents))
186 other
187 (unless (= (length exponents1) (length exponents2))
188 (error "Incompatible dimensions"))
189 (map-into exponents1 #'+ exponents1 exponents2)))
190 self))
191
192(defgeneric divide-by (self other)
193 (:documentation "Divide SELF by OTHER, return SELF.")
194 (:method ((self monom) (other monom))
195 (with-slots ((exponents1 exponents))
196 self
197 (with-slots ((exponents2 exponents))
198 other
199 (unless (= (length exponents1) (length exponents2))
200 (error "divide-by: Incompatible dimensions."))
201 (unless (every #'>= exponents1 exponents2)
202 (error "divide-by: Negative power would result."))
203 (map-into exponents1 #'- exponents1 exponents2)))
204 self))
205
206(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
207 "An :AROUND method of COPY-INSTANCE. It replaces
208exponents with a fresh copy of the sequence."
209 (declare (ignore object initargs))
210 (let ((copy (call-next-method)))
211 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
212 copy))
213
214(defun multiply-2 (object1 object2)
215 "Multiply OBJECT1 by OBJECT2"
216 (multiply-by (copy-instance object1) (copy-instance object2)))
217
218(defun multiply (&rest factors)
219 "Non-destructively multiply list FACTORS."
220 (reduce #'multiply-2 factors))
221
222(defun divide (numerator &rest denominators)
223 "Non-destructively divide object NUMERATOR by product of DENOMINATORS."
224 (divide-by (copy-instance numerator) (multiply denominators)))
225
226(defgeneric divides-p (object1 object2)
227 (:documentation "Returns T if OBJECT1 divides OBJECT2.")
228 (:method ((m1 monom) (m2 monom))
229 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
230 (with-slots ((exponents1 exponents))
231 m1
232 (with-slots ((exponents2 exponents))
233 m2
234 (every #'<= exponents1 exponents2)))))
235
236(defgeneric divides-lcm-p (object1 object2 object3)
237 (:documentation "Returns T if OBJECT1 divides LCM(OBJECT2,OBJECT3), NIL otherwise.")
238 (:method ((m1 monom) (m2 monom) (m3 monom))
239 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
240 (with-slots ((exponents1 exponents))
241 m1
242 (with-slots ((exponents2 exponents))
243 m2
244 (with-slots ((exponents3 exponents))
245 m3
246 (every #'(lambda (x y z) (<= x (max y z)))
247 exponents1 exponents2 exponents3))))))
248
249(defgeneric lcm-divides-lcm-p (object1 object2 object3 object4)
250 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
251 "Returns T if monomial LCM(M1,M2) divides LCM(M3,M4), NIL otherwise."
252 (with-slots ((exponents1 exponents))
253 m1
254 (with-slots ((exponents2 exponents))
255 m2
256 (with-slots ((exponents3 exponents))
257 m3
258 (with-slots ((exponents4 exponents))
259 m4
260 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
261 exponents1 exponents2 exponents3 exponents4)))))))
262
263(defgeneric monom-lcm-equal-lcm-p (object1 object2 object3 object4)
264 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
265 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
266 (with-slots ((exponents1 exponents))
267 m1
268 (with-slots ((exponents2 exponents))
269 m2
270 (with-slots ((exponents3 exponents))
271 m3
272 (with-slots ((exponents4 exponents))
273 m4
274 (every
275 #'(lambda (x y z w) (= (max x y) (max z w)))
276 exponents1 exponents2 exponents3 exponents4)))))))
277
278(defgeneric divisible-by-p (object1 object2)
279 (:documentation "Return T if OBJECT1 is divisible by OBJECT2.")
280 (:method ((m1 monom) (m2 monom))
281 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
282 (with-slots ((exponents1 exponents))
283 m1
284 (with-slots ((exponents2 exponents))
285 m2
286 (every #'>= exponents1 exponents2)))))
287
288(defgeneric rel-prime-p (object1 object2)
289 (:documentation "Returns T if objects OBJECT1 and OBJECT2 are relatively prime.")
290 (:method ((m1 monom) (m2 monom))
291 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
292 (with-slots ((exponents1 exponents))
293 m1
294 (with-slots ((exponents2 exponents))
295 m2
296 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2)))))
297
298(defgeneric universal-lcm (object1 object2)
299 (:documentation "Returns the multiple of objects OBJECT1 and OBJECT2.")
300 (:method ((m1 monom) (m2 monom))
301 "Returns least common multiple of monomials M1 and M2."
302 (with-slots ((exponents1 exponents))
303 m1
304 (with-slots ((exponents2 exponents))
305 m2
306 (let* ((exponents (copy-seq exponents1)))
307 (map-into exponents #'max exponents1 exponents2)
308 (make-instance 'monom :exponents exponents))))))
309
310
311(defgeneric universal-gcd (object1 object2)
312 (:documentation "Returns GCD of objects OBJECT1 and OBJECT2")
313 (:method ((m1 monom) (m2 monom))
314 "Returns greatest common divisor of monomials M1 and M2."
315 (with-slots ((exponents1 exponents))
316 m1
317 (with-slots ((exponents2 exponents))
318 m2
319 (let* ((exponents (copy-seq exponents1)))
320 (map-into exponents #'min exponents1 exponents2)
321 (make-instance 'monom :exponents exponents))))))
322
323(defgeneric depends-p (object k)
324 (:documentation "Returns T iff object OBJECT depends on variable K.")
325 (:method ((m monom) k)
326 "Return T if the monomial M depends on variable number K."
327 (declare (type fixnum k))
328 (with-slots (exponents)
329 m
330 (plusp (elt exponents k)))))
331
332(defgeneric left-tensor-product-by (self other)
333 (:documentation "Returns a tensor product SELF by OTHER, stored into
334 SELF. Return SELF.")
335 (:method ((self monom) (other monom))
336 (with-slots ((exponents1 exponents))
337 self
338 (with-slots ((exponents2 exponents))
339 other
340 (setf exponents1 (concatenate 'vector exponents2 exponents1))))
341 self))
342
343(defgeneric right-tensor-product-by (self other)
344 (:documentation "Returns a tensor product of OTHER by SELF, stored
345 into SELF. Returns SELF.")
346 (:method ((self monom) (other monom))
347 (with-slots ((exponents1 exponents))
348 self
349 (with-slots ((exponents2 exponents))
350 other
351 (setf exponents1 (concatenate 'vector exponents1 exponents2))))
352 self))
353
354(defgeneric left-contract (self k)
355 (:documentation "Drop the first K variables in object SELF.")
356 (:method ((self monom) k)
357 "Drop the first K variables in monomial M."
358 (declare (fixnum k))
359 (with-slots (exponents)
360 self
361 (setf exponents (subseq exponents k)))
362 self))
363
364(defun make-monom-variable (nvars pos &optional (power 1)
365 &aux (m (make-instance 'monom :dimension nvars)))
366 "Construct a monomial in the polynomial ring
367RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
368which represents a single variable. It assumes number of variables
369NVARS and the variable is at position POS. Optionally, the variable
370may appear raised to power POWER. "
371 (declare (type fixnum nvars pos power) (type monom m))
372 (with-slots (exponents)
373 m
374 (setf (elt exponents pos) power)
375 m))
376
377(defgeneric ->list (object)
378 (:method ((m monom))
379 "A human-readable representation of a monomial M as a list of exponents."
380 (coerce (monom-exponents m) 'list)))
381
382;; pure lexicographic
383(defgeneric lex> (p q &optional start end)
384 (:documentation "Return T if P>Q with respect to lexicographic
385order, otherwise NIL. The second returned value is T if P=Q,
386otherwise it is NIL.")
387 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
388 (declare (type fixnum start end))
389 (do ((i start (1+ i)))
390 ((>= i end) (values nil t))
391 (cond
392 ((> (monom-elt p i) (monom-elt q i))
393 (return-from lex> (values t nil)))
394 ((< (monom-elt p i) (monom-elt q i))
395 (return-from lex> (values nil nil)))))))
396
397;; total degree order, ties broken by lexicographic
398(defgeneric grlex> (p q &optional start end)
399 (:documentation "Return T if P>Q with respect to graded
400lexicographic order, otherwise NIL. The second returned value is T if
401P=Q, otherwise it is NIL.")
402 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
403 (declare (type monom p q) (type fixnum start end))
404 (let ((d1 (total-degree p start end))
405 (d2 (total-degree q start end)))
406 (declare (type fixnum d1 d2))
407 (cond
408 ((> d1 d2) (values t nil))
409 ((< d1 d2) (values nil nil))
410 (t
411 (lex> p q start end))))))
412
413;; reverse lexicographic
414(defgeneric revlex> (p q &optional start end)
415 (:documentation "Return T if P>Q with respect to reverse
416lexicographic order, NIL otherwise. The second returned value is T if
417P=Q, otherwise it is NIL. This is not and admissible monomial order
418because some sets do not have a minimal element. This order is useful
419in constructing other orders.")
420 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
421 (declare (type fixnum start end))
422 (do ((i (1- end) (1- i)))
423 ((< i start) (values nil t))
424 (declare (type fixnum i))
425 (cond
426 ((< (monom-elt p i) (monom-elt q i))
427 (return-from revlex> (values t nil)))
428 ((> (monom-elt p i) (monom-elt q i))
429 (return-from revlex> (values nil nil)))))))
430
431
432;; total degree, ties broken by reverse lexicographic
433(defgeneric grevlex> (p q &optional start end)
434 (:documentation "Return T if P>Q with respect to graded reverse
435lexicographic order, NIL otherwise. The second returned value is T if
436P=Q, otherwise it is NIL.")
437 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
438 (declare (type fixnum start end))
439 (let ((d1 (total-degree p start end))
440 (d2 (total-degree q start end)))
441 (declare (type fixnum d1 d2))
442 (cond
443 ((> d1 d2) (values t nil))
444 ((< d1 d2) (values nil nil))
445 (t
446 (revlex> p q start end))))))
447
448(defgeneric invlex> (p q &optional start end)
449 (:documentation "Return T if P>Q with respect to inverse
450lexicographic order, NIL otherwise The second returned value is T if
451P=Q, otherwise it is NIL.")
452 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
453 (declare (type fixnum start end))
454 (do ((i (1- end) (1- i)))
455 ((< i start) (values nil t))
456 (declare (type fixnum i))
457 (cond
458 ((> (monom-elt p i) (monom-elt q i))
459 (return-from invlex> (values t nil)))
460 ((< (monom-elt p i) (monom-elt q i))
461 (return-from invlex> (values nil nil)))))))
462
463(defun reverse-monomial-order (order)
464 "Create the inverse monomial order to the given monomial order ORDER."
465 #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
466 (declare (type monom p q) (type fixnum start end))
467 (funcall order q p start end)))
468
469;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
470;;
471;; Order making functions
472;;
473;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
474
475;; This returns a closure with the same signature
476;; as all orders such as #'LEX>.
477(defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
478 "It constructs an elimination order used for the 1-st elimination ideal,
479i.e. for eliminating the first variable. Thus, the order compares the degrees of the
480first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
481 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
482 (declare (type monom p q) (type fixnum start end))
483 (cond
484 ((> (monom-elt p start) (monom-elt q start))
485 (values t nil))
486 ((< (monom-elt p start) (monom-elt q start))
487 (values nil nil))
488 (t
489 (funcall secondary-elimination-order p q (1+ start) end)))))
490
491;; This returns a closure which is called with an integer argument.
492;; The result is *another closure* with the same signature as all
493;; orders such as #'LEX>.
494(defun make-elimination-order-factory (&optional
495 (primary-elimination-order #'lex>)
496 (secondary-elimination-order #'lex>))
497 "Return a function with a single integer argument K. This should be
498the number of initial K variables X[0],X[1],...,X[K-1], which precede
499remaining variables. The call to the closure creates a predicate
500which compares monomials according to the K-th elimination order. The
501monomial orders PRIMARY-ELIMINATION-ORDER and
502SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
503remaining variables, respectively, with ties broken by lexicographical
504order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
505which indicates that the first K variables appear with identical
506powers, then the result is that of a call to
507SECONDARY-ELIMINATION-ORDER applied to the remaining variables
508X[K],X[K+1],..."
509 #'(lambda (k)
510 (cond
511 ((<= k 0)
512 (error "K must be at least 1"))
513 ((= k 1)
514 (make-elimination-order-factory-1 secondary-elimination-order))
515 (t
516 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
517 (declare (type monom p q) (type fixnum start end))
518 (multiple-value-bind (primary equal)
519 (funcall primary-elimination-order p q start k)
520 (if equal
521 (funcall secondary-elimination-order p q k end)
522 (values primary nil))))))))
523
524(defclass term (monom)
525 ((coeff :initarg :coeff :accessor term-coeff))
526 (:default-initargs :coeff nil)
527 (:documentation "Implements a term, i.e. a product of a scalar
528and powers of some variables, such as 5*X^2*Y^3."))
529
530(defmethod print-object ((self term) stream)
531 (print-unreadable-object (self stream :type t :identity t)
532 (with-accessors ((exponents monom-exponents)
533 (coeff term-coeff))
534 self
535 (format stream "EXPONENTS=~A COEFF=~A"
536 exponents coeff))))
537
538(defmethod universal-equalp ((term1 term) (term2 term))
539 "Returns T if TERM1 and TERM2 are equal as MONOM, and coefficients
540are UNIVERSAL-EQUALP."
541 (and (call-next-method)
542 (universal-equalp (term-coeff term1) (term-coeff term2))))
543
544(defmethod update-instance-for-different-class :after ((old monom) (new term) &key)
545 (setf (term-coeff new) 1))
546
547(defmethod multiply-by :before ((self term) (other term))
548 "Destructively multiply terms SELF and OTHER and store the result into SELF.
549It returns SELF."
550 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
551
552(defmethod left-tensor-product-by :before ((self term) (other term))
553 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
554
555(defmethod right-tensor-product-by :before ((self term) (other term))
556 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
557
558(defmethod divide-by :before ((self term) (other term))
559 (setf (term-coeff self) (divide-by (term-coeff self) (term-coeff other))))
560
561(defgeneric unary-minus (self)
562 (:method ((self term))
563 (setf (term-coeff self) (unary-minus (term-coeff self)))
564 self))
565
566(defgeneric universal-zerop (self)
567 (:method ((self term))
568 (universal-zerop (term-coeff self))))
Note: See TracBrowser for help on using the repository browser.