| 1 | (defun convert-number (number-or-poly n)
|
---|
| 2 | "Returns NUMBER-OR-POLY, if it is a polynomial. If it is a number,
|
---|
| 3 | it converts it to the constant monomial in N variables. If the result
|
---|
| 4 | is a number then convert it to a polynomial in N variables."
|
---|
| 5 | (if (numberp number-or-poly)
|
---|
| 6 | (make-poly-from-termlist (list (make-term (make-monom :dimension n) number-or-poly)))
|
---|
| 7 | number-or-poly))
|
---|
| 8 |
|
---|
| 9 | (defun $poly+ (ring-and-order p q n)
|
---|
| 10 | "Add two polynomials P and Q, where each polynomial is either a
|
---|
| 11 | numeric constant or a polynomial in internal representation. If the
|
---|
| 12 | result is a number then convert it to a polynomial in N variables."
|
---|
| 13 | (poly-add ring-and-order (convert-number p n) (convert-number q n)))
|
---|
| 14 |
|
---|
| 15 | (defun $poly- (ring-and-order p q n)
|
---|
| 16 | "Subtract two polynomials P and Q, where each polynomial is either a
|
---|
| 17 | numeric constant or a polynomial in internal representation. If the
|
---|
| 18 | result is a number then convert it to a polynomial in N variables."
|
---|
| 19 | (poly-sub ring-and-order (convert-number p n) (convert-number q n)))
|
---|
| 20 |
|
---|
| 21 | (defun $minus-poly (ring p n)
|
---|
| 22 | "Negation of P is a polynomial is either a numeric constant or a
|
---|
| 23 | polynomial in internal representation. If the result is a number then
|
---|
| 24 | convert it to a polynomial in N variables."
|
---|
| 25 | (poly-uminus ring (convert-number p n)))
|
---|
| 26 |
|
---|
| 27 | (defun $poly* (ring-and-order p q n)
|
---|
| 28 | "Multiply two polynomials P and Q, where each polynomial is either a
|
---|
| 29 | numeric constant or a polynomial in internal representation. If the
|
---|
| 30 | result is a number then convert it to a polynomial in N variables."
|
---|
| 31 | (poly-mul ring-and-order (convert-number p n) (convert-number q n)))
|
---|
| 32 |
|
---|
| 33 | (defun $poly/ (ring p q)
|
---|
| 34 | "Divide a polynomials P which is either a numeric constant or a
|
---|
| 35 | polynomial in internal representation, by a number Q."
|
---|
| 36 | (if (numberp p)
|
---|
| 37 | (common-lisp:/ p q)
|
---|
| 38 | (scalar-times-poly ring (common-lisp:/ q) p)))
|
---|
| 39 |
|
---|
| 40 | (defun $poly-expt (ring-and-order p l n)
|
---|
| 41 | "Raise polynomial P, which is a polynomial in internal
|
---|
| 42 | representation or a numeric constant, to power L. If P is a number,
|
---|
| 43 | convert the result to a polynomial in N variables."
|
---|
| 44 | (poly-expt ring-and-order (convert-number p n) l))
|
---|
| 45 |
|
---|
| 46 |
|
---|
| 47 | (defun variable-basis (ring n &aux (basis (make-list n)))
|
---|
| 48 | "Generate a list of polynomials X[i], i=0,1,...,N-1."
|
---|
| 49 | (dotimes (i n basis)
|
---|
| 50 | (setf (elt basis i) (make-variable ring n i))))
|
---|
| 51 |
|
---|
| 52 |
|
---|
| 53 | (defun poly-eval-1 (expr vars &optional (ring *ring-of-integers*) (order #'lex>)
|
---|
| 54 | &aux
|
---|
| 55 | (ring-and-order (make-ring-and-order :ring ring :order order))
|
---|
| 56 | (n (length vars))
|
---|
| 57 | (basis (variable-basis ring (length vars))))
|
---|
| 58 | "Evaluate an expression EXPR as polynomial by substituting operators
|
---|
| 59 | + - * expt with corresponding polynomial operators and variables VARS
|
---|
| 60 | with the corresponding polynomials in internal form. We use special
|
---|
| 61 | versions of binary operators $poly+, $poly-, $minus-poly, $poly* and
|
---|
| 62 | $poly-expt which work like the corresponding functions in the POLY
|
---|
| 63 | package, but accept scalars as arguments as well. The result is a
|
---|
| 64 | polynomial in internal form. This operation is somewhat similar to
|
---|
| 65 | the function EXPAND in CAS."
|
---|
| 66 | (cond
|
---|
| 67 | ((numberp expr)
|
---|
| 68 | (cond
|
---|
| 69 | ((zerop expr) NIL)
|
---|
| 70 | (t (make-poly-from-termlist (list (make-term (make-monom :dimension n) expr))))))
|
---|
| 71 | ((symbolp expr)
|
---|
| 72 | (nth (position expr vars) basis))
|
---|
| 73 | ((consp expr)
|
---|
| 74 | (case (car expr)
|
---|
| 75 | (expt
|
---|
| 76 | (if (= (length expr) 3)
|
---|
| 77 | ($poly-expt ring-and-order
|
---|
| 78 | (poly-eval-1 (cadr expr) vars ring order)
|
---|
| 79 | (caddr expr)
|
---|
| 80 | n)
|
---|
| 81 | (error "Too many arguments to EXPT")))
|
---|
| 82 | (/
|
---|
| 83 | (if (and (= (length expr) 3)
|
---|
| 84 | (numberp (caddr expr)))
|
---|
| 85 | ($poly/ ring (cadr expr) (caddr expr))
|
---|
| 86 | (error "The second argument to / must be a number")))
|
---|
| 87 | (otherwise
|
---|
| 88 | (let ((r (mapcar
|
---|
| 89 | #'(lambda (e) (poly-eval-1 e vars ring order))
|
---|
| 90 | (cdr expr))))
|
---|
| 91 | (ecase (car expr)
|
---|
| 92 | (+ (reduce #'(lambda (p q) ($poly+ ring-and-order p q n)) r))
|
---|
| 93 | (-
|
---|
| 94 | (if (endp (cdr r))
|
---|
| 95 | ($minus-poly ring (car r) n)
|
---|
| 96 | ($poly- ring-and-order
|
---|
| 97 | (car r)
|
---|
| 98 | (reduce #'(lambda (p q) ($poly+ ring-and-order p q n)) (cdr r))
|
---|
| 99 | n)))
|
---|
| 100 | (*
|
---|
| 101 | (reduce #'(lambda (p q) ($poly* ring-and-order p q n)) r))
|
---|
| 102 | )))))))
|
---|
| 103 |
|
---|
| 104 |
|
---|
| 105 |
|
---|
| 106 | (defun poly-eval (expr vars &optional (order #'lex>) (ring *ring-of-integers*))
|
---|
| 107 | "Evaluate an expression EXPR, which should be a polynomial
|
---|
| 108 | expression or a list of polynomial expressions (a list of expressions
|
---|
| 109 | marked by prepending keyword :[ to it) given in Lisp prefix notation,
|
---|
| 110 | in variables VARS, which should be a list of symbols. The result of
|
---|
| 111 | the evaluation is a polynomial or a list of polynomials (marked by
|
---|
| 112 | prepending symbol '[) in the internal alist form. This evaluator is
|
---|
| 113 | used by the PARSE package to convert input from strings directly to
|
---|
| 114 | internal form."
|
---|
| 115 | (cond
|
---|
| 116 | ((numberp expr)
|
---|
| 117 | (unless (zerop expr)
|
---|
| 118 | (make-poly-from-termlist
|
---|
| 119 | (list (make-term (make-monom :dimension (length vars)) expr)))))
|
---|
| 120 | ((or (symbolp expr) (not (eq (car expr) :[)))
|
---|
| 121 | (poly-eval-1 expr vars ring order))
|
---|
| 122 | (t (cons '[ (mapcar #'(lambda (p) (poly-eval-1 p vars ring order)) (rest expr))))))
|
---|
| 123 |
|
---|
| 124 |
|
---|