1 | (defun convert-number (number-or-poly n)
|
---|
2 | "Returns NUMBER-OR-POLY, if it is a polynomial. If it is a number,
|
---|
3 | it converts it to the constant monomial in N variables. If the result
|
---|
4 | is a number then convert it to a polynomial in N variables."
|
---|
5 | (if (numberp number-or-poly)
|
---|
6 | (make-poly-from-termlist (list (make-term (make-monom :dimension n) number-or-poly)))
|
---|
7 | number-or-poly))
|
---|
8 |
|
---|
9 | (defun $poly+ (ring-and-order p q n)
|
---|
10 | "Add two polynomials P and Q, where each polynomial is either a
|
---|
11 | numeric constant or a polynomial in internal representation. If the
|
---|
12 | result is a number then convert it to a polynomial in N variables."
|
---|
13 | (poly-add ring-and-order (convert-number p n) (convert-number q n)))
|
---|
14 |
|
---|
15 | (defun $poly- (ring-and-order p q n)
|
---|
16 | "Subtract two polynomials P and Q, where each polynomial is either a
|
---|
17 | numeric constant or a polynomial in internal representation. If the
|
---|
18 | result is a number then convert it to a polynomial in N variables."
|
---|
19 | (poly-sub ring-and-order (convert-number p n) (convert-number q n)))
|
---|
20 |
|
---|
21 | (defun $minus-poly (ring p n)
|
---|
22 | "Negation of P is a polynomial is either a numeric constant or a
|
---|
23 | polynomial in internal representation. If the result is a number then
|
---|
24 | convert it to a polynomial in N variables."
|
---|
25 | (poly-uminus ring (convert-number p n)))
|
---|
26 |
|
---|
27 | (defun $poly* (ring-and-order p q n)
|
---|
28 | "Multiply two polynomials P and Q, where each polynomial is either a
|
---|
29 | numeric constant or a polynomial in internal representation. If the
|
---|
30 | result is a number then convert it to a polynomial in N variables."
|
---|
31 | (poly-mul ring-and-order (convert-number p n) (convert-number q n)))
|
---|
32 |
|
---|
33 | (defun $poly/ (ring p q)
|
---|
34 | "Divide a polynomials P which is either a numeric constant or a
|
---|
35 | polynomial in internal representation, by a number Q."
|
---|
36 | (if (numberp p)
|
---|
37 | (common-lisp:/ p q)
|
---|
38 | (scalar-times-poly ring (common-lisp:/ q) p)))
|
---|
39 |
|
---|
40 | (defun $poly-expt (ring-and-order p l n)
|
---|
41 | "Raise polynomial P, which is a polynomial in internal
|
---|
42 | representation or a numeric constant, to power L. If P is a number,
|
---|
43 | convert the result to a polynomial in N variables."
|
---|
44 | (poly-expt ring-and-order (convert-number p n) l))
|
---|
45 |
|
---|
46 |
|
---|
47 | (defun variable-basis (ring n &aux (basis (make-list n)))
|
---|
48 | "Generate a list of polynomials X[i], i=0,1,...,N-1."
|
---|
49 | (dotimes (i n basis)
|
---|
50 | (setf (elt basis i) (make-variable ring n i))))
|
---|
51 |
|
---|
52 |
|
---|
53 | (defun poly-eval-1 (expr vars &optional (ring *ring-of-integers*) (order #'lex>)
|
---|
54 | &aux
|
---|
55 | (ring-and-order (make-ring-and-order :ring ring :order order))
|
---|
56 | (n (length vars))
|
---|
57 | (basis (variable-basis ring (length vars))))
|
---|
58 | "Evaluate an expression EXPR as polynomial by substituting operators
|
---|
59 | + - * expt with corresponding polynomial operators and variables VARS
|
---|
60 | with the corresponding polynomials in internal form. We use special
|
---|
61 | versions of binary operators $poly+, $poly-, $minus-poly, $poly* and
|
---|
62 | $poly-expt which work like the corresponding functions in the POLY
|
---|
63 | package, but accept scalars as arguments as well. The result is a
|
---|
64 | polynomial in internal form. This operation is somewhat similar to
|
---|
65 | the function EXPAND in CAS."
|
---|
66 | (cond
|
---|
67 | ((numberp expr)
|
---|
68 | (cond
|
---|
69 | ((zerop expr) NIL)
|
---|
70 | (t (make-poly-from-termlist (list (make-term (make-monom :dimension n) expr))))))
|
---|
71 | ((symbolp expr)
|
---|
72 | (nth (position expr vars) basis))
|
---|
73 | ((consp expr)
|
---|
74 | (case (car expr)
|
---|
75 | (expt
|
---|
76 | (if (= (length expr) 3)
|
---|
77 | ($poly-expt ring-and-order
|
---|
78 | (poly-eval-1 (cadr expr) vars ring order)
|
---|
79 | (caddr expr)
|
---|
80 | n)
|
---|
81 | (error "Too many arguments to EXPT")))
|
---|
82 | (/
|
---|
83 | (if (and (= (length expr) 3)
|
---|
84 | (numberp (caddr expr)))
|
---|
85 | ($poly/ ring (cadr expr) (caddr expr))
|
---|
86 | (error "The second argument to / must be a number")))
|
---|
87 | (otherwise
|
---|
88 | (let ((r (mapcar
|
---|
89 | #'(lambda (e) (poly-eval-1 e vars ring order))
|
---|
90 | (cdr expr))))
|
---|
91 | (ecase (car expr)
|
---|
92 | (+ (reduce #'(lambda (p q) ($poly+ ring-and-order p q n)) r))
|
---|
93 | (-
|
---|
94 | (if (endp (cdr r))
|
---|
95 | ($minus-poly ring (car r) n)
|
---|
96 | ($poly- ring-and-order
|
---|
97 | (car r)
|
---|
98 | (reduce #'(lambda (p q) ($poly+ ring-and-order p q n)) (cdr r))
|
---|
99 | n)))
|
---|
100 | (*
|
---|
101 | (reduce #'(lambda (p q) ($poly* ring-and-order p q n)) r))
|
---|
102 | )))))))
|
---|
103 |
|
---|
104 |
|
---|
105 |
|
---|
106 | (defun poly-eval (expr vars &optional (order #'lex>) (ring *ring-of-integers*))
|
---|
107 | "Evaluate an expression EXPR, which should be a polynomial
|
---|
108 | expression or a list of polynomial expressions (a list of expressions
|
---|
109 | marked by prepending keyword :[ to it) given in Lisp prefix notation,
|
---|
110 | in variables VARS, which should be a list of symbols. The result of
|
---|
111 | the evaluation is a polynomial or a list of polynomials (marked by
|
---|
112 | prepending symbol '[) in the internal alist form. This evaluator is
|
---|
113 | used by the PARSE package to convert input from strings directly to
|
---|
114 | internal form."
|
---|
115 | (cond
|
---|
116 | ((numberp expr)
|
---|
117 | (unless (zerop expr)
|
---|
118 | (make-poly-from-termlist
|
---|
119 | (list (make-term (make-monom :dimension (length vars)) expr)))))
|
---|
120 | ((or (symbolp expr) (not (eq (car expr) :[)))
|
---|
121 | (poly-eval-1 expr vars ring order))
|
---|
122 | (t (cons '[ (mapcar #'(lambda (p) (poly-eval-1 p vars ring order)) (rest expr))))))
|
---|
123 |
|
---|
124 |
|
---|