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Introduction

Gröbner bases are very useful, but the original Buchberger algorithm often can-
not compute them in any reasonable amount of time. The algorithm F4 [1][2] by
Faugère is an improved version of the Buchberger algorithm that makes it possible
to compute some previously intractable Gröbner bases, as can be seen by the fact
that the well known cyclic-9 Gröbner basis problem was first cracked using F4.

F4 is very close to a drop-in replacement of the polynomial reduction step in the
Buchberger algorithm and it can easily be combined with conventional criteria for
eliminating useless S-pairs. F4 speeds up the reduction step by exchanging multiple
polynomial divisions for row-reduction of a single matrix.

High Level Perspective

Suppose f is a polynomial that we want to reduce by polynomials r1, . . . , rk.
Then F4 will perform the following steps.

• Construct a matrix A based on f and r1, . . . , rk.
• Compute a row-echelon form Ã of A.
• Read off a reduced form of f from Ã.

The matrix A can be constructed such that many polynomials can be reduced
at the same time, and the reduced polynomials can all be read off from Ã. This
and the speed that has been attained by linear algebra software is what makes F4

so efficient. Note that most of the entries of A will be zero, so it is necessary to use
sparse matrix techniques.

An Example of F4 in Action

If we use Gaussian elimination to reduce A, then the computations performed by
F4 will correspond with those of the polynomial division algorithm. We will start
by looking at an example of polynomial division and then see how F4 performs the
same computation.

We will reduce 2X2 − Y by {X − 1, Y + 2} using the lexicographic term order
where Y ≤ X. The steps in the polynomial division algorithm are as follows.

• (2X2 − Y ) − 2X(X − 1) = 2X − Y
• (2X − Y ) − 2(X − 1) = −Y + 2
• (−Y + 2) + (Y + 2) = 4

F4 performs these same computations by reducing the matrix below. Columns
correspond to monomials and rows correspond to polynomials. Note that the
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columns are sorted in descending order to ensure that the first non-zero entry from
the left in each row corresponds to the initial term of the corresponding polynomial.

X2 X Y 1
1 −1 0 0
0 1 0 −1
0 0 1 2
2 0 −1 0


(corresponds to X(X − 1) = X2 − X)
(corresponds to X − 1)
(corresponds to Y + 2)
(corresponds to 2X2 − Y )

Gaussian elimination on this matrix does the same thing as the polynomial
division algorithm did before. The result is the following matrix.

1 −1 0 0
0 1 0 −1
0 0 1 2
0 0 0 4


Note that the bottom row corresponds to (0, 0, 0, 4) · (X2, X, Y, 1) = 4, which is

the reduced polynomial. This shows the basic way that F4 works, but of course
there are a number of loose ends. We will now clear these up.

Constructing The Matrix A

We will construct A such that A makes it possible to emulate polynomial division
by using Gaussian elimination. Note that an efficient implementation of F4 will not
actually emulate polynomial division; we merely need A to make it possible. We
assume for simplicity that all polynomials have initial coefficient 1.

At each step the polynomial division algorithm looks at the initial monomial
of the intermediate result h and attempts to find an ri such that in≤(ri) |in≤(h).
If such an ri is found, then the next intermediate result will be h − tri where
t := in≤(h)

in≤(ri)
.

We want to make this same computation possible within A. Thus if h is one of
the intermediate results in the polynomial division algorithm and h can be reduced
by some ri, then we need a row in A that corresponds to tri.

We do not need to know the exact value of h − tri in order to predict which rj

will be used in the next step of the polynomial division algorithm — it is sufficient
to know which monomials appear in h− tri. To be on the safe side, we can assume
that h − tri contains all the monomials of f and tri except the initial monomial.

These ideas lead to the following algorithm for constructing A.
(1) Add f to A and let M be the set of monomials of f .
(2) If M is empty, then we are done.
(3) Let m be the maximal monomial in M and remove m from M .
(4) If m cannot be reduced by any ri, then go to step 2.
(5) Choose a monomial t and an ri such that in≤(tri) = m.
(6) Add tri to A, add the monomials of tri except m to M and go to step 2.

This algorithm terminates since the polynomial ring of a field is Noetherian, and
the ideal generated by all monomials that have at some point been removed from
M in step 3 strictly increases each time that step is executed.

The monomial that is removed from M in step 3 does not need to be maximal,
but then it becomes necessary to ensure that already processed monomials are not
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added in the last step. The algorithm still terminates, as any monomial added to
M will eventually also be added to M by the unmodified algorithm above.

By constructing A in this way, we ensure that we can emulate polynomial division
within A. The matrix A might contain some unnecessary rows, since we have
assumed that no terms cancel in h− tri, which might not be true. This is rarely a
problem in practice, but consider the case of reducing x10100 − x10100−1 by x − 1.

Replacing Gaussian Elimination

So far we have used Gaussian elimination to reduce A, and we have argued that
this emulates polynomial division which proves that the result will be correct.

To make F4 efficient we will have to use some more efficient algorithm in place of
Gaussian elimination, and that algorithm may not produce the same row-echelon
form of A as Gaussian elimination does. Thus we need to prove that any row-
echelon form of A will give us a correctly reduced polynomial.

Proof. This would be immediately obvious if row-echelon forms were unique, but
of course they are not. The reduced row-echelon form is, however, unique. If we
use Gaussian elimination to compute the reduced row-echelon form of A, then that
corresponds to fully reducing f using polynomial division.1

Let Ã be some row-echelon form of A and let Ã′ be the reduced row-echelon
form of A. Then we can transform Ã′ into Ã using row operations that leave the
pivots unchanged. This corresponds to adding multiples of r1, . . . , rk to the fully
reduced polynomial without changing the initial term (if any). That still gives us
a correctly reduced polynomial. �

The reduced polynomial will either be zero or have an initial term that cannot
be reduced by any of r1, . . . , rk. Thus we can spot the row in Ã that corresponds
to the reduced polynomial as it either is all zeroes or has its pivot in a column of
Ã that does not contain a pivot in A.

Computing Multiple Reductions In One Step

The Buchberger algorithm computes many polynomial reductions one after the
other. Suppose we need to reduce polynomials f1, . . . , fn. Then we could construct
a matrix for each fi and reduce these matrices separately. It is more efficient to
construct a single matrix A that contains all the rows of the matrices A1, . . . , An

excluding duplicates. Then reducing A will reduce all of f1, . . . , fn simultaneously.
The only difference between reducing the polynomials one at a time and reducing

them simultaneously is that then the reduced polynomials will be reducing one
another linearly, but this it not a problem for the Buchberger algorithm.
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1Note that reducing a polynomial only implies that the initial term cannot be further reduced,
while fully reducing implies that no term can be further reduced.
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