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Abstract

The computation of Gröbner bases remains one of the most powerful methods
for tackling the Polynomial System Solving (PoSSo) problem. The most efficient
known algorithms reduce the Gröbner basis computation to Gaussian elimina-
tions on several matrices. However, several degrees of freedom are available to
generate these matrices. It is well known that the particular strategies used can
drastically affect the efficiency of the computations. In this work we investigate
a recently-proposed strategy, the so-called “Mutant strategy”, on which a new
family of algorithms is based (MXL, MXL2 and MXL3). By studying and de-
scribing the algorithms based on Gröbner basis concepts, we demonstrate that
the Mutant strategy can be understood to be equivalent to the classical Normal
Selection strategy currently used in Gröbner basis algorithms. Furthermore, we
show that the “partial enlargement” technique can be understood as a strategy
for restricting the number of S-polynomials considered in an iteration of the
F4 Gröbner basis algorithm, while the new termination criterion used in MXL3

does not lead to termination at a lower degree than the classical Gebauer-Möller
installation of Buchberger’s criteria. We claim that our results map all novel
concepts from the MXL family of algorithms to their well-known Gröbner basis
equivalents. Using previous results that had shown the relation between the
original XL algorithm and F4, we conclude that the MXL family of algorithms
can be fundamentally reduced to redundant variants of F4.

Keywords: Gröbner bases, polynomial system solving, mutants.

1. Introduction

The past few years have witnessed a growing interest from the crypto-
graphic community in computational algebra methods, in particular Gröbner
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basis algorithms [8, 9]. This was motivated by the proposal of algebraic at-
tacks against stream ciphers [13] and block ciphers [17, 26, 1, 2], as well as
by the proposal of several public-key schemes based on systems of multivari-
ate polynomial equations (e.g., [36]), and the corresponding cryptanalysis using
the F5 algorithm [23, 25, 21, 6]. One particular algorithm has received con-
siderable attention from the cryptographic community: the XL algorithm [15]
(and its several variants, e.g., [16, 17, 14]) was originally proposed by cryptog-
raphers to tackle problems arising specifically from cryptology. Although not
strictly a Gröbner basis algorithm, it used a similar idea to the one proposed by
Lazard [27]: it constructs the Macaulay matrix up to some large degree D and
reduces it to obtain the solution of the system. The algorithm was shown to
work only under particular conditions [19], while other flaws were also shown in
other high-profile variants [12, 28]. Eventually, it was shown that the XL algo-
rithm could be described essentially as a redundant (and less efficient) variant
of the F4 algorithm [3]. That is, one can simulate the XL algorithm using a
variant of the F4 algorithm.

Despite of these results, because of its simplicity the XL algorithm contin-
ues to attract the attention of researchers working in cryptography [11, 37].
In this paper we investigate a prominent recent addition to the XL family,
namely the MutantXL algorithms [11, 34, 33, 10]. The concept of Mutants
was first introduced in [11], giving rise to a family of algorithms and techniques
[34, 33, 10], which showed to be particularly efficient against the MQQ multivari-
ate cryptosystem [35]. Unlike the XL algorithm, some of the Mutant algorithms
(e.g., MXL3 [33]) do in fact explicitly compute the Gröbner basis of the cor-
responding ideal, assuming it is zero-dimensional. Because of the remarkable
experimental results reported in [33], a natural question arises: what is behind
such a performance? Is it due to changes in the algorithm, implementation
tricks, tuning towards particular problems, or perhaps a fundamentally novel
algorithmic idea?

In the MutantXL literature [11, 34, 33, 10] the observed performance gains
are attributed to algorithmic advances. Hence, in order to compare the Mu-
tantXL family of algorithms to standard techniques in computational commu-
tative algebra, we need to describe both in common terms. This will allow us to
answer the question, whether mutants are a new concept or whether they can
be described based on well-known computational algebra concepts. Likewise,
are the new mutant strategies general enough, so that they can potentially be
incorporated to existent Gröbner basis algorithms?

There has been so far no in-depth study of the mathematical properties of
mutants and related strategies, and how they are connected to other Gröbner ba-
sis algorithms. Because of this, there is a considerable gap between the symbolic
computation and the cryptographic communities. Both investigate efficient al-
gorithms for solving polynomial systems but results seem incommensurable in
terms of strategy.

In this work, we undertake the task to bridge this gap. In particular, we
compare the MXL family with two variants of the F4 algorithm [20]: first, the
so-called simplified F4 which does not use Buchberger’s criteria to avoid useless
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reductions to zero and second, the full F4 as specified in [20]. Considering these
algorithms, we show that the Mutant strategy can be understood as essentially
equivalent to the Normal Selection strategy as used in Gröbner basis algorithms,
such as F4. Based on previous results, which showed the relation between the XL
algorithm and F4 [3], we conclude that MXL can too be described as a redundant
variant of F4. Furthermore, we also study the “partial enlargement” strategy
proposed in [34] and demonstrate that it corresponds to selecting a subset of
S-polynomials in Gröbner basis algorithms. As a result, we conclude that MXL2

can also be described as a variant of F4, although a variant that diverges from
known approaches about how to select the number of S-polynomials in each
iteration. Finally, we consider the new termination criterion proposed in [33]
and demonstrate that it does not lead to a lower degree of termination than using
Buchberger’s criteria to remove useless pairs in a Gröbner basis algorithm. As
a result, we reach the conclusion that MXL3 can be reduced to a redundant
variant of the full F4 algorithm.

Our work is in the tradition of previous papers comparing different ap-
proaches for polynomial system solving [30, 31, 29]. We stress, however, that the
equivalence of algorithms presented in this work is constructive, i.e., we show
that the Mutant family of algorithms can be simulated using redundant variants
of the F4 algorithm.

The remaining of this work is organised as follows. In Section 2 we recall the
well-known XL algorithm, and re-state the result showing the relation between
XL and F4. In Section 3 we review well-known statements from commutative
algebra. For the sake of exposition, we place particular emphasis on the concept
of S-polynomials and the central role they play in Gröbner bases computations.
In particular, we show that in XL-style algorithms any multiplication of polyno-
mials by monomials except for those giving rise to S-polynomials is redundant.
In Section 4 we review the definition of Mutants, and present our pseudocode for
the MXL3 algorithm. In Section 5 we state and prove our main result, namely
that the Mutant strategy is a redundant variant of the Normal Selection strat-
egy. We also treat partial enlargement and the termination condition of MXL3

in Section 5. We conclude in Section 6, where we include a brief discussion on
what we view as the limitations of using running times as the sole basis for
comparison between Gröbner basis algorithms.

2. The XL Algorithm

In this section we briefly recall the well-known XL algorithm. An iterative
variant of the algorithm is given in Algorithm 1. We adopt the notation from
[33] and, given a set of polynomials S, we denote by S(op)d the subset of S with
elements of degree (op)d where (op) ∈ {=, <,≤, >,≥}.

It was shown in [3] that the XL algorithm can be emulated using the F4

algorithm. In particular, [3] proves that:

Lemma 1. XL (described in Algorithm 1) can be simulated using F4 (described
in Algorithm 3) by adding redundant pairs.
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Input: F – a tuple of polynomials
Input: D – an integer > 0
Result: a D-Gröbner basis for F
begin1

G←− ∅;2

for 1 ≤ d ≤ D do3

F=d ←− ∅;4

for f ∈ F do5

if deg(f) = d then6

add f to F=d;7

else if deg(f) < d then8

M=d−deg(f) ←− all monomials of degree d− deg(f);9

for m ∈M=d−deg(f) do10

add m · f to F=d;11

G←− the row echelon form (of the matrix) of G ∪ F=d;12

return G13

end14

Algorithm 1: XL

A simple corollary of this result is that the following holds when both algorithms
only compute up to a fixed degree D.

Corollary 1. Let GXL,D be the set of polynomials computed by the XL al-
gorithm up to degree D. Then ∀g ∈ GXL,D, there exists f ∈ GF4,D with
LM(f) | LM(g), where GF4,D is the set of polynomials computed by the F4

algorithm up to degree D.

3. Gröbner Bases Basics

In this section we recall some basic results about Gröbner bases. For a
more detailed treatment, we refer the reader to, for instance, [18]. Consider
a polynomial ring R = F[x0, . . . , xn−1] over some finite field F. We adopt
some admissible ordering on monomials in R. We can then denote by LM(f)
the largest or leading monomial appearing in f ∈ R and by LC(f) ∈ F the
coefficient corresponding to LM(f) in f . By LT(f) we denote LC(f) · LM(f).
In this work LV(f) denotes the largest variable – ordered w.r.t. the monomial
ordering – in the leading monomial LM(f) of f , and given a set F ⊂ R, we
define LV(F, x) as {f ∈ F | LV(f) = x}. The set of leading monomials of F is
defined as LM(F ) = {LM(f) | f ∈ F}, M denotes the set of all monomials in
R, while M(F ) is the set of all monomials appearing in the polynomials in F .

The ideal I generated by f0, . . . , fm−1 ∈ R, denoted 〈f0, . . . , fm−1〉, is de-
fined as {

m−1∑
i=0

hifi | h0, . . . , hm−1 ∈ R

}
.
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It is well-known that every ideal I ⊆ R is finitely generated. A Gröbner basis
of an ideal I is a particular set of generators.

Definition 1 (Gröbner Basis). Let I be an ideal of F[x0, . . . , xn−1] and fix
a monomial ordering. A finite subset

G = {g0, . . . , gm−1} ⊂ I

is said to be a Gröbner basis of I if for any f ∈ I there exists gi ∈ G such that
LM(gi) | LM(f).

We note that if a set of polynomials f0, . . . , fm−1 has a unique root, i.e. the sys-
tem of equations f0 = 0, . . . , fm−1 = 0 has a unique solution, then computation
of the Gröbner basis of the corresponding ideal allows one to solve the system
(i.e. the solution can be “read” directly on the Gröbner basis). More generally,
if the ideal is zero-dimensional, the solutions of a system can be computed from
a Gröbner basis in polynomial-time (in the number of solutions) [22].

Since the notion of Gröbner bases is defined by the existence of relatively
low leading terms, the task of computing a Gröbner basis is essentially to find
new elements in the ideal with lower leading terms until no more such elements
can be found. Buchberger proved in his PhD thesis [8] that Gröbner bases can
be computed by considering only S-polynomials. Such polynomials are designed
to cancel leading terms and thus potentially produce new elements in the ideal
with lower leading terms.

Definition 2 (S-Polynomial). Let f, g ∈ F[x0, . . . , xn−1] be non-zero poly-
nomials.

• Let LM(f) =
∏n−1
i=0 x

αi
i and LM(g) =

∏n−1
i=0 x

βi
i , with αi, βi ∈ N, denote

the leading monomials of f and g respectively. Set γi = max(αi, βi) for

every 0 ≤ i < n, and denote by xγ =
∏n−1
i=0 x

γi
i . It holds that xγ is the

least common multiple of LM(f) and LM(g), written as

xγ = LCM(LM(f),LM(g)).

• The S-polynomial of f and g is defined as

S(f, g) =
xγ

LT(f)
· f − xγ

LT(g)
· g.

Now let G = {g0, . . . , gs−1} ⊂ R, and I be the ideal generated by G. We say
that a polynomial f ∈ I has a standard representation w.r.t. G if there exist
constants a0, . . . , as−1 ∈ F and monomials t0, . . . , ts−1 ∈M such that

f =

s−1∑
k=0

aktkgk,

with LM(tkgk) ≤ LM(f). Buchberger’s main result stated that G is a Gröbner
basis for I if and only if every S-polynomial S(gi, gj) has a standard represen-
tation w.r.t. G.
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Furthermore, Buchberger showed that in the computation of Gröbner bases
it is sufficient to consider S-polynomials only, since any reduction of leading
terms can be attributed to S-polynomials. There are many variants of this result
in textbooks on commutative algebra; we give below the statement and proof
based on [18] since the presentation helps to understand the close connection
between XL and Gröbner basis algorithms. The proof is included for the sake
of completeness.

Lemma 2. Let f0, . . . , ft−1 be nonzero polynomials in R. Given a monomial
xδ such that LM(fi) | xδ for all i = 0, . . . , t − 1, let xα(0), . . ., xα(t−1) be
monomials in R such that xα(i) LM(fi) = xδ for all i. We consider the sum
f = Σt−1i=0cix

α(i)fi, where c0, . . . , ct−1 ∈ F\{0}. If LM(f) < xδ, then there exist
constants bj ∈ F such that

f =

t−1∑
i=0

cix
α(i)fi =

t−2∑
j=0

bjx
δ−τj S(fj , fj+1), (1)

where xτj = LCM(LM(fj),LM(fj+1)). Furthermore

xδ−τjS(fj , fj+1) < xδ, for all j = 0, . . . , t− 2.

Proof. Let di = LC(fi). It follows that cidi is the leading coefficient of

cix
α(i)fi. Furthermore, let pi = xα(i)fi

di
and thus LC(pi) = 1. Consider the

“telescope sum”:

f =

t−1∑
i=0

cix
α(i)fi =

t−1∑
i=0

cidi
xα(i)fi
di

=

t−1∑
i=0

cidipi

=

t−1∑
i=0

 i∑
j=0

cjdj −
i−1∑
j=0

cjdj

 pi

=

t−1∑
i=0

i∑
j=0

cjdjpi −
t−2∑
i=−1

i∑
j=0

cjdj pi+1

=

t−1∑
j=0

cjdjpt−1 +

t−2∑
i=0

i∑
j=0

cjdj(pi − pi+1).

All cix
α(i)fi have xδ as leading monomial. Since their sum has smaller leading

monomial, we have that Σt−1i=0cidi = 0, leading to:

f =

t−2∑
i=0

i∑
j=0

cjdj(pi − pi+1). (2)
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By assumption xα(i) LM(fi) = xδ for all i = 0, . . . , t− 1, and we have:

xδ−τjS(fj , fj+1) = xδ−τj
(

xτj

LT(fj)
fj −

xτj

LT(fj+1)
fj+1

)
=

xα(j)

dj
fj −

xα(j+1)

dj+1
fj+1

= pj − pj+1.

This is now plugged into the telescope sum (2) leading to:

f =

t−2∑
i=0

i∑
j=0

cjdjx
δ−τiS(fi, fi+1) =

t−2∑
i=0

bix
δ−τiS(fi, fi+1),

with bi =
∑i
j=0 cjdj . Since the polynomials pj and pj+1 have leading monomial

xδ and leading coefficient 1, the difference pj − pj+1 has a smaller leading
monomial. Since we have that pj − pj+1 = xδ−τjS(fj , fj+1), this claim also
holds true for xδ−τjS(fj , fj+1). Thus the Lemma holds. �

The following corollary is a simple generalisation of Lemma 2 to sums where
not all summands have the same leading term.

Corollary 2. Let f0, . . . , ft−1 be polynomials in R. Consider the polynomial f
as the sum f = Σt−1i=0cix

α(i)fi, with coefficients c0, . . . , ct−1 ∈ F\{0}, such that
LM(f) < xδ = max{xα(i)LM(fi)}. Without loss of generality, we can assume
that there is a t̃ such that xα(j)LM(fj) = xδ for j < t̃ and xα(k)LM(fk) < xδ

for k ≥ t̃. Then there exist constants bi ∈ F such that

f =

t̃−2∑
i=0

bix
δ−τiS(fi, fi+1) +

t−1∑
k=t̃

ckx
α(k)fk

=
∑

c̃ix
α̃(i)f̃i,

where xτj = LCM(LM(fj),LM(fj+1)), c̃ix
α̃(i)f̃i = ci+1x

α(i+1)fi+1 if i ≥ t̃− 1
and bix

δ−τiS(fi, fi+1) otherwise. Furthermore, for all 0 ≤ i ≤ t̃− 2, we have

LM(xδ−τiS(fi, fi+1)) < xδ

and thus
xα̃(i)LM(f̃i) < xδ for all i.

Corollary 2 states essentially that whatever cancellations can be produced by
monomial multiplications and F-linear combinations, they can be attributed to
S-polynomials. It follows that the only cancellations that need to be considered
in an XL-style algorithm are those produced by S-polynomials.
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Example 1. Consider the polynomials f = xy + x + 1, g = x + 1 and h =
z + 1 ∈ F127[x, y, z], a pathological example constructed to demonstrate the
role of S-polynomials. We fix the degree reverse lexicographical term ordering.
To compute a Gröbner basis, we start by constructing two S-polynomials of
degree two, namely: f − y · g = x − y + 1 and z · g − x · h = −x + z. We note
that the latter trivially reduces to zero and would be detected and avoided by
Buchberger’s first criterion [18]. Ignoring this optimisation, in matrix notation,
we would have to consider the six rows corresponding to f, y · g, z · g, x ·h, g and
h. For comparison, XL would consider the following polynomials up to degree
two.

f = xy + x+ 1, x · g = x2 + x, y · g = xy + y,
z · g = xz + z, x · h = xz + x, y · h = yz + y,
z · h = z2 + z, g = x+ 1, h = z + 1.

In matrix notation we have

A =



0 1 0 0 0 1 0 0 1
1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 1


and E =



1 0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 −1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 −1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0


.

Of course, the system f = 0, g = 0, h = 0 is straightforwardly solved by eval-
uating f at x = −1 as implied by g. We note, however, that this computation
is equivalent to reducing the S-polynomial S(f, g) by g, i.e., the first step in
Buchberger’s algorithm.

Note that Lemma 2 does not state that LM(f) = max{LM(S(fj , fj+1))}, but
rather that the leading terms of summands decrease once rewritten using S-
polynomials. In the following example, we consider the case when LM(f) <
max{LM(S(fj , fj+1))}. In this case, we can reapply Lemma 2 to f ′i = S(fi, fj)
as the following example emphasizes.

Example 2. Consider the polynomials f = xy + a, g = yz + b, and h = ab+ 1
in the polynomial ring F127[x, y, z, a, b]. We consider the degree reverse lexico-
graphical term ordering. There are three possible S-polynomials S(f, g), S(f, h)
and S(g, h). Two of them – S(f, h) and S(g, h) – trivially reduce to zero and
would be detected and avoided by Buchberger’s first criterion. However, one
S-polynomial does not reduce to zero: s0 = z · f − x · g = za− xb. From s0 we
can then construct s1 = b · s0− z ·h = −xb2− z, among others, also at degree 3,
which is an element of the reduced Gröbner basis. The XL algorithm at degree
3 will produce

{m · p | m ∈ {1, x, y, z, a, b}, p ∈ {f, g, h}},
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which reduces to

x2y + xa, xy2 + ya, xyz + xb, y2z + yb,
yz2 + zb, xya+ a2, yza− 1, xyb− 1,
yzb+ b2, xab+ x, yab+ y, zab+ z,
a2b+ a, ab2 + b, xy + a, yz + b,
za− xb, and ab+ 1

by Gaussian elimination. Note that xb2 + z is not in that list. However, if we
increase the degree of XL to 4, the list returned is

x3y + x2a, x2y2 − a2, xy3 + y2a, x2yz + x2b,
xy2z + 1, y3z + y2b, xyz2 + xzb, y2z2 − b2,
yz3 + z2b, x2ya+ xa2, xy2a+ ya2, xyza− x,
y2za− y, yz2a− z, xya2 + a3, yza2 − a,
x2yb− x, xy2b− y, xyzb− z, y2zb+ yb2,
yz2b+ zb2, x2ab+ x2, xyab− a, y2ab+ y2,
xzab+ xz. yzab− b, z2ab+ z2, xa2b+ xa,
ya2b+ ya, za2b+ xb, a3b+ a2, xyb2 − b,
yzb2 + b3, xab2 + xb, yab2 + yb, zab2 + zb,
a2b2 − 1, ab3 + b2, x2y + xa, xy2 + ya,
xyz + xb, y2z + yb, yz2 + zb, xya+ a2,
xza− x2b, yza− 1, z2a− xzb, za2 + x,
xyb− 1, yzb+ b2, xab+ x, yab+ y,
zab+ z, a2b+ a, xb2 + z, ab2 + b,
xy + a, yz + b, za− xb and ab+ 1,

which does contain xb2 + z. Thus, XL did produce xb2 + z in one step at degree
4 but it could not produce xb2 + z at degree 3 since this element corresponds to

b · (z · f − x · g)− z · h = (bz) · f − (bx) · g − z · h,

but we have that deg(bz · f) = 4. We note that this behaviour of XL was the
motivation for the Mutant concept.

4. Mutants and MXL algorithms

Let F = {f0, . . . , fm−1} ⊂ F[x0, . . . , xn−1], and I = 〈f0, . . . , fm−1〉 be the
ideal generated by F . Recall that any element f ∈ I can be written as

f =

m−1∑
i=0

hi · fi, with hi ∈ F[x0, . . . , xn−1].

Note that this representation is usually not unique. Following the terminology
of [11], we call the level of the representation

∑
fi∈F hi · fi of f the maximum

degree of {hi · fi | fi ∈ F}. We call the level of f the minimal level of all its
representations. We can then define the concept of a mutant [11, 34, 33].
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Definition 3. Given a set of generators F of an ideal I, a polynomial f ∈ I is
a mutant if its total degree is strictly less than its level.

A mutant corresponds to a “low-degree” relation occurring during XL or more
generally during any Gröbner basis computation. It follows from the discussion
in Section 3 that, in the language of commutative algebra, a mutant occurs
when an S-polynomial has a lower-degree leading monomial after reduction by
F and if this new leading monomial was not in the set LM(F ) before reduction.

The concept of mutant has recently motivated the proposal of a family XL-
style algorithms [11, 34, 33, 10]. We discuss below the most prominent, namely
the MXL3 algorithm.

4.1. MXL3 Algorithm

The MXL family of algorithms improves the XL algorithm using the mu-
tant concept. In particular, the MXL3 (Algorithmm 2) differs from XL in the
following respects:

1. Instead of “blindly” increasing the degree in each iteration of the algo-
rithm, the MXL algorithms treat mutants at the lowest possible degree,
(cf. line 9 in Algorithm 2). This is the key contribution of the MXL
algorithm [11].

2. Instead of considering all elements F=d of the current degree d, MXL3 only
considers a subset of elements per iteration. It incrementally adds more
elements of the current degree, if the elements of the previous iteration
did not suffice to solve the system (cf. lines 24-26 in Algorithm 2). This is
called partial enlargement in [34, 33]. This is the key contribution of the
MXL2 algorithm [34].

3. XL terminates at the user-provided degreeD, while MXL3 does not require
to fix the degree a priori. Instead, the algorithm will terminate once a
Gröbner basis was found using a new criterion (cf. line 18 in Algorithm 2).
This is the key contribution of the MXL3 algorithm [33].

The pseudocode presented in Algorithm 2 is a slightly simplified variant of the
MXL3 algorithm; we use this presentation in Section 5 to compare it with the
F4 algorithm (Algorithm 3).

Our pseudocode has some minor differences with the pseudocode presented
in [33]; we list these below:

Partial enlargement. We disregard any partial enlargement strategy in the
case when mutants were found. This matches the pseudocode in [33].
However, the actual implementation of MXL3 does indeed use the partial
enlargement when Mu 6= ∅ (i.e. mutants exist) [32]. We note that our
pseudocode and that in [11] are equivalent to MXL [11] in this case. Since
our work is mainly concerned with the concept of mutants, maintaining
this simplification seems appropriate.

Choice of y. In line 11 we set y to max{LV(f) | f ∈ F≤k+1} instead of
max{LV(f) | f ∈Mu=k} since this allows reductions among all elements
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of degree k + 1 instead of only those in Mu=k+1. Restricting reduction
to the elements of Mu=k+1 could lead to incomplete reductions and thus
results. The actual implementation of MXL3 uses “partial enlargement”
in this step and thus increases y iteratively [32].

Incomplete reductions. In line 25 we removed the optimisation that only
variables ≤ x are used for multiplication in the extension step. This
optimisation can lead to an incorrect result as some reductions are never
performed. As an example, consider f = ab+ 1, g = bc+ a+ b and h = c.
The reduced Gröbner basis of the ideal 〈f, g, h〉 over F2[a, b, c] with respect
to a degree lexicographical term ordering is {a+ 1, b+ 1, c}. However, the
pseudocode of MXL3 as described in [33] will not perform the necessary
reductions. The leading variable of h is c, thus h ∈ LV(F, c) and h is never
extended using any variable except c, since a > c and b > c.

Furthermore, the S-polynomial S(f, g) = c · f − a · g = (abc+ c)− (abc+
ab+ a) = ab+ a+ c is not constructed since ag requires multiplication of
g in LV(F, b) by a but a > b. Thus, on termination the output of MXL3

is not a Gröbner basis.

Our change matches Proposition 3 from [33], which requires that forH ←−
{t·g | g ∈ G, t a term and deg(t·g) ≤ D+1} the reduced row echelon form
of H is G. However, this property is not enforced by MXL3 as presented in
pseudocode in [33], since some t · g are prohibited from being constructed
if deg(t) = 1 and t > LV(g). We confirmed with the authors of [33] that
their implementation catches up on those missing multiplications when
newExtend = True [32].

We also present a simplified version of the F4 algorithm in Algorithm 3. For
this, we need however to introduce the required notation.

Definition 4. Let F ⊂ F[x0, . . . , xn−1], and (f, g) ∈ F × F with f 6= g. We
denote:

Pair(f, g) =
(
LCM(LM(f),LM(g)),mf , f,mg, g

)
,

where LCM(LM(f),LM(g)) = LM(mg · g) = LM(mf · f). Now, let P =
{Pair(f, g) | ∀(f, g) ∈ P ×P with g > f},p = Pair(f, g) ∈ P . We define Left
and Right as:

Left(p) = (mf , f) Right(p) = (mg, g),

Left(P ) =
⋃

p∈P Left(p) Right(P ) =
⋃

p∈P Right(p).

5. Relationship between the MXL Algorithms and F4

In this section we discuss the relation between MXL3 and F4. It was shown
in [3] that XL can be understood as a redundant variant of F4 (cf. Lemma 1).
Thus, we know that the “framework” of MXL3 is compatible with F4. In par-
ticular, we know that in each iteration of the main loop XL will not compute
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any non-redundant polynomials not computed by F4. Thus in order to study
the connection between the two algorithms, we only have to consider the mod-
ifications made in MXL3 compared to XL. That is, we consider each of these
modifications independently and argue that these still perform the same useful
computations as the F4 algorithm.

5.1. Mutants

The most visible change to XL in MXL3 is the special treatment given to
mutants, i.e. when Mu 6= ∅. That is, instead of increasing the degree d in each
iteration, if there is a fall of degree, then these new elements are treated at the
current or perhaps a smaller degree before the algorithm proceeds to increase
the degree as normally. Thus, compared to XL, the MXL family of algorithms
may terminate at a lower degree.

On the other hand, the F4 algorithm does not specify how to choose poly-
nomials in each iteration of the main loop. Instead, the user passes a function
Sel which specifies how to select pairs of polynomials. However, in [20] it is
suggested to choose the normal selection strategy [4, p. 225] for most inputs.
We recall here how the normal strategy has been adopted in F4.

Definition 5 (Normal Strategy). Let F = {f0, . . . , fm−1}. We shall say
that a pair (fi, fj) ∈ F × F with fi 6= fj is a critical pair. Let then P ⊂ F × F
be the set of critical pairs. We denote by LCM(pij) the least common multiple
of the leading monomials of the critical pair pij = (fi, fj) ∈ P. We also call
deg(LCM(pij)) the degree of the critical pair pij . Further, let

d = min{deg(LCM(p)) | p ∈ P}

be the minimal degree of those least common multiples of p in P. Then the
normal selection strategy selects the subset

P ′ = {p ∈ P | deg(LCM(p)) = d}.

We can now state our main result.

Theorem 1. Let both MXL3 and F4 compute a Gröbner basis with respect to
the same degree compatible ordering on the same input. Assume that until iter-
ation i (inclusive) of the main loop both F4 and MXL3 computed the same list of
polynomials except for redundant polynomials, i.e., the leading monomials ap-
pearing in F4 divide the leading monomials appearing in MXL3. Furthermore,
assume that Mu 6= ∅ in Algorithm 2 at line 9 and define k to be the minimal
degree of a polynomial in Mu. The set of polynomials F≤k+1 considered by
MXL3 in the next iteration of the main loop is a superset of the polynomials
considered by F4 when using the Normal Selection Strategy in the next iteration
i+ 1. Furthermore, every polynomial in F≤k+1 not in the set considered by F4

is redundant in this iteration.
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Proof. We note that it follows from Corollary 1 that the first assumption of
the theorem will be satisfied while Mu = ∅. Now assume we have Mu 6= ∅.
First consider the F4 algorithm, and let Sel be the Normal Selection Strategy.
Then, the set Pi+1 will contain the S-polynomials of lowest degree in P. Every
S-polynomial in Pi+1 will have at least degree k + 1, since the set Mu=k is in
row echelon form and k is the minimal degree in Mu. If there exists an S-poly-
nomial of degree k + 1 then it is of the form tifi − tjfj with deg(tifi) = k + 1
and deg(tjfj) = k + 1, where at least one of ti, tj has degree 1. MXL3, on
the other hand, constructs all multiples tijfi with deg(tij) = 1 if deg(fi) = k.
Furthermore, it considers all elements of degree k + 1 in the next iteration
which covers the case that one of ti, tj is 1. Hence, both components of the
S-polynomial are included in F≤k+1.

In the Symbolic Preprocessing phase F4 also constructs all components of
potential S-polynomials that could arise during the elimination. These are al-
ways of the form fi − tjfj where deg(fi) = deg(tjfj). Since MXL3 considers
all monomial multiplies of all fj up to degree k + 1 in the next iteration, these
components are also included in the set Fk+1.

Recall from Corollary 2 that all f = Σt−1i=0cix
α(i)fi can be rewritten as

f =

t−2∑
j=0

bjx
δ−τjS(fj , fj+1)

if f < max{xα(i)fi}. Note that deg(xδ) ≤ k + 1 for F≤k+1 and that deg(xτj ) =
k + 1 for all S-polynomials contained in F≤k+1. It follows that deg(xδ−τj ) = 0
if bj 6= 0. That is, any f with a smaller leading term than its representation
Σt−1i=0cix

α(i)fi can be computed by an F-linear combination of S-polynomials:

f =
∑t−2
j=0 bjS(fj , fj+1).

It follows immediately from Corollary 2 that any multiple of fi which does
not correspond to an S-polynomial is redundant in this iteration since it cannot
lead to a drop of a leading monomial. �

For the MXL algorithm, which only differs from XL when Mu 6= ∅, the
following corollary is a direct consequence of Theorem 1 and Corollary 1.

Corollary 3. MXL can be simulated using F4 (described in Algorithm 3) by
adding redundant pairs and using the Normal Selection Strategy.

We note however that the MXL3 algorithm may improve upon MXL when
Mu = ∅ by using a “partial enlargement” strategy, which we discuss below.

5.2. Partial Enlargement

The “partial enlargement” technique was introduced in MXL2 and is also ap-
plied in MXL3. Instead of multiplying every polynomial fi ∈ F by all variables
x0, . . . , xn−1 only a subset LV(F, x) is considered. This subset is increased in
each iteration by increasing x. In the language of linear algebra, the algorithm
first computes the row echelon form of a submatrix in the lower right corner. If
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that does not suffice to produce elements of smaller degree, a larger submatrix
is considered.

This corresponds to selecting a subset of S-polynomials with small least
common multiple in Sel instead of selecting all polynomials of minimal degree.
We note that both the PolyBoRi package [7] and Magma computer algebra
system [5] accept an option to restrict the number of S-polynomials considered
in each iteration. However, the strategy for how the number of S-polynomials is
chosen in Magma and PolyBoRi is different from MXL3. In the former ones, a
constant number of S-polynomials is chosen as specified by the user; in the latter
(MXL3) a changeable number of S-polynomials is chosen based on the partition
by leading variable. The strategy employed in MXL3 will consider S-polynomials
S(f, g) where both f and g have leading variable at most x (inclusive). That
is, if there is an S-polynomial S(f, g) = tf · f − tg · g with LV(f) < LV(g),
MXL3 will construct tf · f when considering LV(F,LV(f)) and tg · g when
considering LV(F,LV(g)). Since F≤d contains all elements of degree at most d,
both components are included in the matrix when LV(F,LV(g)) are considered.

It is currently not clear which strategy for selecting subsets of S-polynomials
is beneficial under which conditions. It should be noted however that if the
size of the matrix is the main concern then selecting exactly the smallest S-
polynomial in each iteration would be optimal; just as Buchberger’s algorithm
does. On the other hand, the contribution of algorithms such as F4 is to improve
performance by considering more than one S-polynomial in each iteration. Thus,
it is not certain that using matrix sizes as a main measure of comparison gives
an adequate picture of the performance of these algorithms.

5.3. Termination Criterion

The key contribution of the MXL3 algorithm is the introduction of a new cri-
terion to detect when a Gröbner basis is found. Since the MXL family does not
use the concept of critical pairs, standard termination criteria such as an empty
list of pairs are not immediately applicable. In Lemma 3 we give an equivalent
variant of this criterion, rephrased to be more suitable for our discussion.

Lemma 3 (Proposition 3 in [33]). Let G = {g0, . . . , gs−1} be a finite subset
of F[x0, . . . , xn−1] with D being the highest degree of its elements. Suppose that
the following hold:

1. all monomials of degree D in F[x0, . . . , xn−1] are divisible by a leading
monomial of some gi ∈ G; and

2. if H = G ∪ {t · gi | gi ∈ G, t a monomial and deg(t · gi) ≤ D + 1}, there
exists H̃ – a row echelon form of H – such that LM(H̃≤D) ⊂ 〈LM(G)〉.

Then G is a Gröbner basis.

Note that condition 1 implies that the ideal generated by G is 0-dimensional.
The MXL3 algorithm uses a termination criterion based on Lemma 3 and

thus will consider matrices up to degree D + 1 (where D is defined as in
Lemma 3). The F4 algorithm, on the other hand, will terminate once the list of
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critical pairs is empty. It is obvious that no new pairs will be created after the
Gröbner basis is found, since all reductions will lead to zero in this situation.
However, if we consider F4 as given in Algorithm 3, one can see that the algo-
rithm may consider pairs of degree > D+ 1 after a Gröbner basis is discovered,
if those pairs were constructed before the Gröbner basis is found. Put differ-
ently, the simplified F4 variant considered in this work does not prune the list
of critical pairs based on the current basis G. However, the full F4 algorithm as
specified in [20, p. 69] does indeed prune the list P by calling a subroutine called
Update. In [20] a reference to [4, p. 230] is made – which applies Buchberger’s
first and second criteria using the Gebauer-Möller installation – as an example
of such a routine.

The question thus becomes whether Buchberger’s first and/or second crite-
rion will remove all pairs of degree > D + 1 if the conditions (1) and (2) of
Lemma 3 hold. An algorithmic variant of Buchberger’s second criterion is given
in the Lemma below.

Lemma 4 (Buchberger’s second criterion). Let p, g1, g2 ∈ F[x0, . . . , xn−1]
be such that

LM(p) | LCM(LM(g1),LM(g2)).

and S(g1, p), S(g2, p) have already been considered. Then S(g1, g2) does not
need to be considered and can be discarded.

We can now prove that the full F4 algorithm will not consider pairs of higher
degree than the MXL3 when applying Buchberger’s second criterion.

Proposition 1. We assume a degree compatible ordering on F[x0, . . . , xn−1].
If during a Gröbner basis computation using the full F4 algorithm conditions
(1) and (2) of Lemma 3 hold, then Buchberger’s second criterion will remove
any pair of degree > D + 1 from the list of critical pairs. As a result F4 will
consider critical pairs of degree at most D + 1.

Our proof follows very closely the original proof of Lemma 3 in [33].

Proof. Let G = {g0, . . . , gs−1} be a finite subset of F[x0, . . . , xn−1] with D
being the highest degree of its elements such that:

1. all monomials of degree D in F[x0, . . . , xn−1] are divisible by a leading
monomial of some gi ∈ G; and

2. if H = G ∪ {t · gi | gi ∈ G, t a monomial and deg(t · gi) ≤ D + 1}, there
exists H̃ – a row echelon form of H – such that LM(H̃≤D) ⊂ 〈LM(G)〉.

We denote the S-polynomial S(gi, gj) by f , and let d = deg(f). We only have
to consider pairs of degree d > D + 1.

To do so, let m = LCM(LM(gi),LM(gj)). There exist monomials mi,mj

such that m = mi · LM(gi) = mj · LM(gj). It is clear that GCD(mi,mj) = 1.
By assumption deg(gi) and deg(gj) are at most equal to D. This implies

that deg(mj) ≥ 2 (resp. deg(mj) ≥ 2) since d > D + 1. It is then possible to
write mi = mi,1 ·mi,2 such that deg(gi) + deg(mi,2) = D+ 1 and deg(mi,1) ≥ 1.
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A similar decomposition can be found for mj = mj,1 ·mj,2. Thus, we have that
all monomials mi,1,mi,2,mj,1 ·mj,2 are of degree ≥ 1.

Now, let m∗ = m
mi,1·mj,1 . By construction, we have

LCM(m∗,LM(gi)) = m/mi,1 (resp. LCM(m∗,LM(gj)) = m/mj,1),

which divides m properly. We also have deg(m∗) ≤ D. Since m1 and m2 must
be distinct, we have that m∗ cannot be equal to either LM(gi) or LM(gj). By
condition 1, there exists g ∈ G \ {g1, g2} such that with LM(g) = m∗. In
addition

deg(LCM(LM(g),LM(gi)) < deg(m)

and deg(LCM(LM(g),LM(gj)) < deg(m). Thus, S(g, gi) and S(g, gj) are being
considered at a lower degree than D + 1.

Finally, m∗ divides m = LCM(LM(gi),LM(gj)) by construction. It then
follows from Buchberger’s second criterion that f = S(gi, gj) does not need to
be considered and is discarded. �

6. Conclusion

In this work we have studied the MXL family of algorithms, and their con-
nections to Gröbner bases theory. We demonstrated that the mutant strategy
as used in the MXL algorithms is in fact a redundant variant of the Normal Se-
lection Strategy. Furthermore, we showed that the partial enlargement strategy
proposed in [34] corresponds to selecting a subset of S-polynomials of minimal
degree in each iteration of algorithms such as F4. As a result, we conclude
that both the MXL and MXL2 algorithms can be seen as redundant variants of
the F4 algorithm, although the latter may select critical pairs differently from
usual F4 implementations. Finally, we studied the novel termination criterion
proposed in [33] and concluded that it does not allow the algorithm to termi-
nate at a lower degree than F4. Consequently, we conclude that MXL3 too can
be understood as a redundant variant of the F4 algorithm. However, here too
we emphasise that it might selects S-polynomials differently from standard F4

implementations due to the partial enlargement strategy.
We conclude with a brief discussion on what we view as the limitations of us-

ing running times as the basis for comparison between Gröbner basis algorithms.
Linear algebra-based Gröbner bases algorithms allow several degrees of freedom
to the designer and implementer of the algorithm to generate the matrices, and
selection of strategies can drastically affect the efficiency of the computations.
Furthermore, the specific implementation details and sub-algorithms used in the
implementation (e.g., the package used for performing the Gaussian reductions,
the internal representation of sparse matrices, etc.) will also have great effect
on running times and memory requirements (cf., Appendix A for an example).

In fact, we claim that three almost-independent aspects will affect running
times of such algorithms: the mathematical details of the algorithm itself, the
strategies and heuristics used in the implementation, and the low-level imple-
mentation details. The first aspect was the main focus of interest in this paper,
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but it should be clear that our results do not preclude that particular implemen-
tations of MutantXL algorithms can outperform particular implementations of
F4/F5 in some situations. On the other hand, we are aware that it is difficult to
compare the complexity of Gröbner basis algorithms and strategies and that de-
signers often have little choice but to resort to experimental data to demonstrate
the viability of their approach.
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Input: F – a list of polynomials f0, . . . , fm−1 ∈ F[x0, . . . , xn−1] spanning
a zero-dimensional ideal.

Result: A Gröbner basis for 〈f0, . . . , fm−1〉.
begin1

D ←− max{deg(f) | f ∈ F};2

d←− min{deg(f) | f ∈ F};3

Mu←− ∅; newExtend←− True; x←− x0; CL←− d;4

while True do5

F̃≤d ←− the row echelon form (or matrix form) of F≤d;6

Mu←−Mu ∪ {f ∈ F̃≤d | deg(f) < d and LM(f) 6∈ LM(F≤d)};7

F≤d ←− F̃≤d;8

// did we find mutants?

if Mu 6= ∅ then9

k ←− min{deg(f) | f ∈Mu};10

y ←− max{LV(f) | f ∈ F≤k+1};11

Mu+=k ←− Multiply all elements of Mu=k by all variables ≤ y;12

Mu←−Mu \Mu=k;13

F ←− F ∪Mu+=k;14

d←− k + 1;15

else16

// does the basis contain all monomials of some

degree dt?
if d < CL and M=dt ⊆ LM(F ) for some 1 ≤ dt ≤ d then17

// We found a Gröbner basis

return F ;18

// did we do all enlargements at this degree

already?

if newExtend = True then19

D ←− D + 1;20

x←− min{LV(f) | f ∈ F=D−1};21

newExtend←− False;22

else23

// do partial enlargement and eliminate

x←− min{LV(f) | f ∈ F=D−1 and LV(f) > x};24

F+ ←− Multiply all elements of LV(F, x) by all variables25

≤ x without redundancies;
F ←− F ∪ F+;26

if x = x0 then27

newExtend←− True;28

CL←− D;29

d←− D;30

end31

Algorithm 2: MXL3 (simplified)
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Input: F – a tuple of polynomials f0, . . . , fm−1
Input: Sel – a selection strategy
Result: a Gröbner basis for F
begin1

G, i←− F, 0;2

F̃+
i ←− F ;3

P ←− {Pair(f, g) | ∀f, g ∈ G with g > f};4

while P 6= ∅ do5

i←− i+ 1;6

Pi ←− Sel(P );7

P ←− P \ Pi;8

Li ←− Left(Pi)
⋃

Right(Pi);9

// Symbolic Preprocessing

Fi ←− {t · f | ∀(t, f) ∈ Li};10

Done←− LM(Fi);11

while M(F ) 6= Done do12

m←− an element in M(F ) \Done;13

add m to Done;14

if ∃ g ∈ G such thatLM(g) | m then15

u = m/LM(g);16

add u · g to Fi;17

// Gaussian Elimination

F̃i ←− the row echelon form of Fi;18

F̃+
i ←− {f ∈ F̃i | LM(f) 6∈ LM(F )};19

for h ∈ F̃+
i do20

P ←− P
⋃
{Pair(f, h) : ∀f ∈ G};21

add h to G;22

return G;23

end24

Algorithm 3: F4 (simplified)
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[30] Mandache, A. M., 1995. Gröbner bases computation and Gaussian elimi-
nation. Ph.D. thesis, RISC, Johannes Kepler University Linz.

[31] Mandache, A. M., 1996. On the relationship between Involutive basis and
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Appendix A. Effect of Linear Algebra Implementations on Gröbner
Basis Computations

To show the effect of the linear algebra implementation, we compare two
implementations of the F4 algorithm. The only difference is the linear algebra
package used to perform the Gaussian elimination step. We compare the origi-
nal FGb implementation with the new linear algebra package described in [24].
However, to make the comparison fair we only use a sequential version of the
package described in [24]. To compare, we consider the reduction of the 7th
matrix occurring in the computation of a Gröbner basis of the standard bench-
mark Katsura 12 over F65521, as well as the full Gröbner basis computation.
Typically, it takes 326.1 sec and 250 Mbytes to reduce the 7th matrix with FGb
and 83.7 seconds and 682 Mbytes using FGb with the library from [24].

Table A.1: Algorithm: F4 – Katsura 14 over F65521.
Matrix 7 (21, 915× 23, 127) Full Gröbner basis

FGb/CPU 83 s. 326 s.
FGb/Memory 250 Mbytes 262 Mbytes
FGb/Pasco/CPU [24] (1 core) 32 s. 151 s.
FGb/Pasco/Memory [24] 682 Mbytes 682 Mbytes

24

https://www.researchgate.net/publication/220919730_Parallel_Gaussian_Elimination_for_Grobner_bases_computations_in_finite_fields?el=1_x_8&enrichId=rgreq-3c3f9a84220aa96ba1fa80a25d7e3659-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMzNzEyNjtBUzo5OTA0ODEyODI1Mzk3OUAxNDAwNjI2MzIzMjI5
https://www.researchgate.net/publication/220919730_Parallel_Gaussian_Elimination_for_Grobner_bases_computations_in_finite_fields?el=1_x_8&enrichId=rgreq-3c3f9a84220aa96ba1fa80a25d7e3659-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMzNzEyNjtBUzo5OTA0ODEyODI1Mzk3OUAxNDAwNjI2MzIzMjI5
https://www.researchgate.net/publication/220919730_Parallel_Gaussian_Elimination_for_Grobner_bases_computations_in_finite_fields?el=1_x_8&enrichId=rgreq-3c3f9a84220aa96ba1fa80a25d7e3659-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMzNzEyNjtBUzo5OTA0ODEyODI1Mzk3OUAxNDAwNjI2MzIzMjI5

