- Timestamp:
- 2015-06-05T11:27:08-07:00 (9 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/f4grobner/grobner.lisp
r56 r65 293 293 `(when $poly_grobner_debug (format *terminal-io* ,@args))) 294 294 295 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 296 ;; 297 ;; An implementation of Grobner basis 298 ;; 299 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 300 301 302 303 304 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 305 ;; 306 ;; An implementation of the division algorithm 307 ;; 308 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 309 310 (defun grobner-op (ring c1 c2 m f g) 311 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial. 312 Assume that the leading terms will cancel." 313 #+grobner-check(funcall (ring-zerop ring) 314 (funcall (ring-sub ring) 315 (funcall (ring-mul ring) c2 (poly-lc f)) 316 (funcall (ring-mul ring) c1 (poly-lc g)))) 317 #+grobner-check(monom-equal-p (poly-lm f) (monom-mul m (poly-lm g))) 318 ;; Note that we can drop the leading terms of f ang g 319 (poly-sub ring 320 (scalar-times-poly-1 ring c2 f) 321 (scalar-times-poly-1 ring c1 (monom-times-poly m g)))) 322 323 (defun poly-pseudo-divide (ring f fl) 324 "Pseudo-divide a polynomial F by the list of polynomials FL. Return 325 multiple values. The first value is a list of quotients A. The second 326 value is the remainder R. The third argument is a scalar coefficient 327 C, such that C*F can be divided by FL within the ring of coefficients, 328 which is not necessarily a field. Finally, the fourth value is an 329 integer count of the number of reductions performed. The resulting 330 objects satisfy the equation: C*F= sum A[i]*FL[i] + R." 331 (declare (type poly f) (list fl)) 332 (do ((r (make-poly-zero)) 333 (c (funcall (ring-unit ring))) 334 (a (make-list (length fl) :initial-element (make-poly-zero))) 335 (division-count 0) 336 (p f)) 337 ((poly-zerop p) 338 (debug-cgb "~&~3T~d reduction~:p" division-count) 339 (when (poly-zerop r) (debug-cgb " ---> 0")) 340 (values (mapcar #'poly-nreverse a) (poly-nreverse r) c division-count)) 341 (declare (fixnum division-count)) 342 (do ((fl fl (rest fl)) ;scan list of divisors 343 (b a (rest b))) 344 ((cond 345 ((endp fl) ;no division occurred 346 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder 347 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p)))) 348 (pop (poly-termlist p)) ;remove lt(p) from p 349 t) 350 ((monom-divides-p (poly-lm (car fl)) (poly-lm p)) ;division occurred 351 (incf division-count) 352 (multiple-value-bind (gcd c1 c2) 353 (funcall (ring-ezgcd ring) (poly-lc (car fl)) (poly-lc p)) 354 (declare (ignore gcd)) 355 (let ((m (monom-div (poly-lm p) (poly-lm (car fl))))) 356 ;; Multiply the equation c*f=sum ai*fi+r+p by c1. 357 (mapl #'(lambda (x) 358 (setf (car x) (scalar-times-poly ring c1 (car x)))) 359 a) 360 (setf r (scalar-times-poly ring c1 r) 361 c (funcall (ring-mul ring) c c1) 362 p (grobner-op ring c2 c1 m p (car fl))) 363 (push (make-term m c2) (poly-termlist (car b)))) 364 t))))))) 365 366 (defun poly-exact-divide (ring f g) 367 "Divide a polynomial F by another polynomial G. Assume that exact division 368 with no remainder is possible. Returns the quotient." 369 (declare (type poly f g)) 370 (multiple-value-bind (quot rem coeff division-count) 371 (poly-pseudo-divide ring f (list g)) 372 (declare (ignore division-count coeff) 373 (list quot) 374 (type poly rem) 375 (type fixnum division-count)) 376 (unless (poly-zerop rem) (error "Exact division failed.")) 377 (car quot))) 378 379 380 381 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 382 ;; 383 ;; An implementation of the normal form 384 ;; 385 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 386 387 (defun normal-form-step (ring fl p r c division-count 388 &aux (g (find (poly-lm p) fl 389 :test #'monom-divisible-by-p 390 :key #'poly-lm))) 391 (cond 392 (g ;division possible 393 (incf division-count) 394 (multiple-value-bind (gcd cg cp) 395 (funcall (ring-ezgcd ring) (poly-lc g) (poly-lc p)) 396 (declare (ignore gcd)) 397 (let ((m (monom-div (poly-lm p) (poly-lm g)))) 398 ;; Multiply the equation c*f=sum ai*fi+r+p by cg. 399 (setf r (scalar-times-poly ring cg r) 400 c (funcall (ring-mul ring) c cg) 401 ;; p := cg*p-cp*m*g 402 p (grobner-op ring cp cg m p g)))) 403 (debug-cgb "/")) 404 (t ;no division possible 405 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder 406 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p)))) 407 (pop (poly-termlist p)) ;remove lt(p) from p 408 (debug-cgb "+"))) 409 (values p r c division-count)) 410 411 ;; Merge it sometime with poly-pseudo-divide 412 (defun normal-form (ring f fl &optional (top-reduction-only $poly_top_reduction_only)) 413 ;; Loop invariant: c*f0=sum ai*fi+r+f, where f0 is the initial value of f 414 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list.")) 415 (do ((r (make-poly-zero)) 416 (c (funcall (ring-unit ring))) 417 (division-count 0)) 418 ((or (poly-zerop f) 419 ;;(endp fl) 420 (and top-reduction-only (not (poly-zerop r)))) 421 (progn 422 (debug-cgb "~&~3T~d reduction~:p" division-count) 423 (when (poly-zerop r) 424 (debug-cgb " ---> 0"))) 425 (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f))) 426 (values f c division-count)) 427 (declare (fixnum division-count) 428 (type poly r)) 429 (multiple-value-setq (f r c division-count) 430 (normal-form-step ring fl f r c division-count)))) 295 431 296 432 297 … … 440 305 ;; 441 306 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 442 443 (defun buchberger-criterion (ring g)444 "Returns T if G is a Grobner basis, by using the Buchberger445 criterion: for every two polynomials h1 and h2 in G the S-polynomial446 S(h1,h2) reduces to 0 modulo G."447 (every448 #'poly-zerop449 (makelist (normal-form ring (spoly ring (elt g i) (elt g j)) g nil)450 (i 0 (- (length g) 2))451 (j (1+ i) (1- (length g))))))452 307 453 308 (defun grobner-test (ring g f) … … 467 322 t) 468 323 469 470 471 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;472 ;;473 ;; Pair queue implementation474 ;;475 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;476 477 (defun sugar-pair-key (p q &aux (lcm (monom-lcm (poly-lm p) (poly-lm q)))478 (d (monom-sugar lcm)))479 "Returns list (S LCM-TOTAL-DEGREE) where S is the sugar of the S-polynomial of480 polynomials P and Q, and LCM-TOTAL-DEGREE is the degree of is LCM(LM(P),LM(Q))."481 (declare (type poly p q) (type monom lcm) (type fixnum d))482 (cons (max483 (+ (- d (monom-sugar (poly-lm p))) (poly-sugar p))484 (+ (- d (monom-sugar (poly-lm q))) (poly-sugar q)))485 lcm))486 487 (defstruct (pair488 (:constructor make-pair (first second489 &aux490 (sugar (car (sugar-pair-key first second)))491 (division-data nil))))492 (first nil :type poly)493 (second nil :type poly)494 (sugar 0 :type fixnum)495 (division-data nil :type list))496 497 ;;(defun pair-sugar (pair &aux (p (pair-first pair)) (q (pair-second pair)))498 ;; (car (sugar-pair-key p q)))499 500 (defun sugar-order (x y)501 "Pair order based on sugar, ties broken by normal strategy."502 (declare (type cons x y))503 (or (< (car x) (car y))504 (and (= (car x) (car y))505 (< (monom-total-degree (cdr x))506 (monom-total-degree (cdr y))))))507 508 (defvar *pair-key-function* #'sugar-pair-key509 "Function that, given two polynomials as argument, computed the key510 in the pair queue.")511 512 (defvar *pair-order* #'sugar-order513 "Function that orders the keys of pairs.")514 515 (defun make-pair-queue ()516 "Constructs a priority queue for critical pairs."517 (make-priority-queue518 :element-type 'pair519 :element-key #'(lambda (pair) (funcall *pair-key-function* (pair-first pair) (pair-second pair)))520 :test *pair-order*))521 522 (defun pair-queue-initialize (pq f start523 &aux524 (s (1- (length f)))525 (b (nconc (makelist (make-pair (elt f i) (elt f j))526 (i 0 (1- start)) (j start s))527 (makelist (make-pair (elt f i) (elt f j))528 (i start (1- s)) (j (1+ i) s)))))529 "Initializes the priority for critical pairs. F is the initial list of polynomials.530 START is the first position beyond the elements which form a partial531 grobner basis, i.e. satisfy the Buchberger criterion."532 (declare (type priority-queue pq) (type fixnum start))533 (dolist (pair b pq)534 (priority-queue-insert pq pair)))535 536 (defun pair-queue-insert (b pair)537 (priority-queue-insert b pair))538 539 (defun pair-queue-remove (b)540 (priority-queue-remove b))541 542 (defun pair-queue-size (b)543 (priority-queue-size b))544 545 (defun pair-queue-empty-p (b)546 (priority-queue-empty-p b))547 548 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;549 ;;550 ;; Buchberger Algorithm Implementation551 ;;552 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;553 554 (defun buchberger (ring f start &optional (top-reduction-only $poly_top_reduction_only))555 "An implementation of the Buchberger algorithm. Return Grobner basis556 of the ideal generated by the polynomial list F. Polynomials 0 to557 START-1 are assumed to be a Grobner basis already, so that certain558 critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top559 reduction will be preformed. This function assumes that all polynomials560 in F are non-zero."561 (declare (type fixnum start))562 (when (endp f) (return-from buchberger f)) ;cut startup costs563 (debug-cgb "~&GROBNER BASIS - BUCHBERGER ALGORITHM")564 (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))565 #+grobner-check (when (plusp start)566 (grobner-test ring (subseq f 0 start) (subseq f 0 start)))567 ;;Initialize critical pairs568 (let ((b (pair-queue-initialize (make-pair-queue)569 f start))570 (b-done (make-hash-table :test #'equal)))571 (declare (type priority-queue b) (type hash-table b-done))572 (dotimes (i (1- start))573 (do ((j (1+ i) (1+ j))) ((>= j start))574 (setf (gethash (list (elt f i) (elt f j)) b-done) t)))575 (do ()576 ((pair-queue-empty-p b)577 #+grobner-check(grobner-test ring f f)578 (debug-cgb "~&GROBNER END")579 f)580 (let ((pair (pair-queue-remove b)))581 (declare (type pair pair))582 (cond583 ((criterion-1 pair) nil)584 ((criterion-2 pair b-done f) nil)585 (t586 (let ((sp (normal-form ring (spoly ring (pair-first pair)587 (pair-second pair))588 f top-reduction-only)))589 (declare (type poly sp))590 (cond591 ((poly-zerop sp)592 nil)593 (t594 (setf sp (poly-primitive-part ring sp)595 f (nconc f (list sp)))596 ;; Add new critical pairs597 (dolist (h f)598 (pair-queue-insert b (make-pair h sp)))599 (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"600 (pair-sugar pair) (length f) (pair-queue-size b)601 (hash-table-count b-done)))))))602 (setf (gethash (list (pair-first pair) (pair-second pair)) b-done)603 t)))))604 605 (defun parallel-buchberger (ring f start &optional (top-reduction-only $poly_top_reduction_only))606 "An implementation of the Buchberger algorithm. Return Grobner basis607 of the ideal generated by the polynomial list F. Polynomials 0 to608 START-1 are assumed to be a Grobner basis already, so that certain609 critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top610 reduction will be preformed."611 (declare (ignore top-reduction-only)612 (type fixnum start))613 (when (endp f) (return-from parallel-buchberger f)) ;cut startup costs614 (debug-cgb "~&GROBNER BASIS - PARALLEL-BUCHBERGER ALGORITHM")615 (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))616 #+grobner-check (when (plusp start)617 (grobner-test ring (subseq f 0 start) (subseq f 0 start)))618 ;;Initialize critical pairs619 (let ((b (pair-queue-initialize (make-pair-queue) f start))620 (b-done (make-hash-table :test #'equal)))621 (declare (type priority-queue b)622 (type hash-table b-done))623 (dotimes (i (1- start))624 (do ((j (1+ i) (1+ j))) ((>= j start))625 (declare (type fixnum j))626 (setf (gethash (list (elt f i) (elt f j)) b-done) t)))627 (do ()628 ((pair-queue-empty-p b)629 #+grobner-check(grobner-test ring f f)630 (debug-cgb "~&GROBNER END")631 f)632 (let ((pair (pair-queue-remove b)))633 (when (null (pair-division-data pair))634 (setf (pair-division-data pair) (list (spoly ring635 (pair-first pair)636 (pair-second pair))637 (make-poly-zero)638 (funcall (ring-unit ring))639 0)))640 (cond641 ((criterion-1 pair) nil)642 ((criterion-2 pair b-done f) nil)643 (t644 (let* ((dd (pair-division-data pair))645 (p (first dd))646 (sp (second dd))647 (c (third dd))648 (division-count (fourth dd)))649 (cond650 ((poly-zerop p) ;normal form completed651 (debug-cgb "~&~3T~d reduction~:p" division-count)652 (cond653 ((poly-zerop sp)654 (debug-cgb " ---> 0")655 nil)656 (t657 (setf sp (poly-nreverse sp)658 sp (poly-primitive-part ring sp)659 f (nconc f (list sp)))660 ;; Add new critical pairs661 (dolist (h f)662 (pair-queue-insert b (make-pair h sp)))663 (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"664 (pair-sugar pair) (length f) (pair-queue-size b)665 (hash-table-count b-done))))666 (setf (gethash (list (pair-first pair) (pair-second pair))667 b-done) t))668 (t ;normal form not complete669 (do ()670 ((cond671 ((> (poly-sugar sp) (pair-sugar pair))672 (debug-cgb "(~a)?" (poly-sugar sp))673 t)674 ((poly-zerop p)675 (debug-cgb ".")676 t)677 (t nil))678 (setf (first dd) p679 (second dd) sp680 (third dd) c681 (fourth dd) division-count682 (pair-sugar pair) (poly-sugar sp))683 (pair-queue-insert b pair))684 (multiple-value-setq (p sp c division-count)685 (normal-form-step ring f p sp c division-count))))))))))))686 687 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;688 ;;689 ;; Grobner Criteria690 ;;691 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;692 693 (defun criterion-1 (pair)694 "Returns T if the leading monomials of the two polynomials695 in G pointed to by the integers in PAIR have disjoint (relatively prime)696 monomials. This test is known as the first Buchberger criterion."697 (declare (type pair pair))698 (let ((f (pair-first pair))699 (g (pair-second pair)))700 (when (monom-rel-prime-p (poly-lm f) (poly-lm g))701 (debug-cgb ":1")702 (return-from criterion-1 t))))703 704 (defun criterion-2 (pair b-done partial-basis705 &aux (f (pair-first pair)) (g (pair-second pair))706 (place :before))707 "Returns T if the leading monomial of some element P of708 PARTIAL-BASIS divides the LCM of the leading monomials of the two709 polynomials in the polynomial list PARTIAL-BASIS, and P paired with710 each of the polynomials pointed to by the the PAIR has already been711 treated, as indicated by the absence in the hash table B-done."712 (declare (type pair pair) (type hash-table b-done)713 (type poly f g))714 ;; In the code below we assume that pairs are ordered as follows:715 ;; if PAIR is (I J) then I appears before J in the PARTIAL-BASIS.716 ;; We traverse the list PARTIAL-BASIS and keep track of where we717 ;; are, so that we can produce the pairs in the correct order718 ;; when we check whether they have been processed, i.e they719 ;; appear in the hash table B-done720 (dolist (h partial-basis nil)721 (cond722 ((eq h f)723 #+grobner-check(assert (eq place :before))724 (setf place :in-the-middle))725 ((eq h g)726 #+grobner-check(assert (eq place :in-the-middle))727 (setf place :after))728 ((and (monom-divides-monom-lcm-p (poly-lm h) (poly-lm f) (poly-lm g))729 (gethash (case place730 (:before (list h f))731 ((:in-the-middle :after) (list f h)))732 b-done)733 (gethash (case place734 ((:before :in-the-middle) (list h g))735 (:after (list g h)))736 b-done))737 (debug-cgb ":2")738 (return-from criterion-2 t)))))739 740 741 742 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;743 ;;744 ;; An implementation of the algorithm of Gebauer and Moeller, as745 ;; described in the book of Becker-Weispfenning, p. 232746 ;;747 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;748 749 (defun gebauer-moeller (ring f start &optional (top-reduction-only $poly_top_reduction_only))750 "Compute Grobner basis by using the algorithm of Gebauer and751 Moeller. This algorithm is described as BUCHBERGERNEW2 in the book by752 Becker-Weispfenning entitled ``Grobner Bases''. This function assumes753 that all polynomials in F are non-zero."754 (declare (ignore top-reduction-only)755 (type fixnum start))756 (cond757 ((endp f) (return-from gebauer-moeller nil))758 ((endp (cdr f))759 (return-from gebauer-moeller (list (poly-primitive-part ring (car f))))))760 (debug-cgb "~&GROBNER BASIS - GEBAUER MOELLER ALGORITHM")761 (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))762 #+grobner-check (when (plusp start)763 (grobner-test ring (subseq f 0 start) (subseq f 0 start)))764 (let ((b (make-pair-queue))765 (g (subseq f 0 start))766 (f1 (subseq f start)))767 (do () ((endp f1))768 (multiple-value-setq (g b)769 (gebauer-moeller-update g b (poly-primitive-part ring (pop f1)))))770 (do () ((pair-queue-empty-p b))771 (let* ((pair (pair-queue-remove b))772 (g1 (pair-first pair))773 (g2 (pair-second pair))774 (h (normal-form ring (spoly ring g1 g2)775 g776 nil #| Always fully reduce! |#777 )))778 (unless (poly-zerop h)779 (setf h (poly-primitive-part ring h))780 (multiple-value-setq (g b)781 (gebauer-moeller-update g b h))782 (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d~%"783 (pair-sugar pair) (length g) (pair-queue-size b))784 )))785 #+grobner-check(grobner-test ring g f)786 (debug-cgb "~&GROBNER END")787 g))788 789 (defun gebauer-moeller-update (g b h790 &aux791 c d e792 (b-new (make-pair-queue))793 g-new)794 "An implementation of the auxillary UPDATE algorithm used by the795 Gebauer-Moeller algorithm. G is a list of polynomials, B is a list of796 critical pairs and H is a new polynomial which possibly will be added797 to G. The naming conventions used are very close to the one used in798 the book of Becker-Weispfenning."799 (declare800 #+allegro (dynamic-extent b)801 (type poly h)802 (type priority-queue b))803 (setf c g d nil)804 (do () ((endp c))805 (let ((g1 (pop c)))806 (declare (type poly g1))807 (when (or (monom-rel-prime-p (poly-lm h) (poly-lm g1))808 (and809 (notany #'(lambda (g2) (monom-lcm-divides-monom-lcm-p810 (poly-lm h) (poly-lm g2)811 (poly-lm h) (poly-lm g1)))812 c)813 (notany #'(lambda (g2) (monom-lcm-divides-monom-lcm-p814 (poly-lm h) (poly-lm g2)815 (poly-lm h) (poly-lm g1)))816 d)))817 (push g1 d))))818 (setf e nil)819 (do () ((endp d))820 (let ((g1 (pop d)))821 (declare (type poly g1))822 (unless (monom-rel-prime-p (poly-lm h) (poly-lm g1))823 (push g1 e))))824 (do () ((pair-queue-empty-p b))825 (let* ((pair (pair-queue-remove b))826 (g1 (pair-first pair))827 (g2 (pair-second pair)))828 (declare (type pair pair)829 (type poly g1 g2))830 (when (or (not (monom-divides-monom-lcm-p831 (poly-lm h)832 (poly-lm g1) (poly-lm g2)))833 (monom-lcm-equal-monom-lcm-p834 (poly-lm g1) (poly-lm h)835 (poly-lm g1) (poly-lm g2))836 (monom-lcm-equal-monom-lcm-p837 (poly-lm h) (poly-lm g2)838 (poly-lm g1) (poly-lm g2)))839 (pair-queue-insert b-new (make-pair g1 g2)))))840 (dolist (g3 e)841 (pair-queue-insert b-new (make-pair h g3)))842 (setf g-new nil)843 (do () ((endp g))844 (let ((g1 (pop g)))845 (declare (type poly g1))846 (unless (monom-divides-p (poly-lm h) (poly-lm g1))847 (push g1 g-new))))848 (push h g-new)849 (values g-new b-new))850 851 852 853 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;854 ;;855 ;; Standard postprocessing of Grobner bases856 ;;857 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;858 859 (defun reduction (ring plist)860 "Reduce a list of polynomials PLIST, so that non of the terms in any of861 the polynomials is divisible by a leading monomial of another862 polynomial. Return the reduced list."863 (do ((q plist)864 (found t))865 ((not found)866 (mapcar #'(lambda (x) (poly-primitive-part ring x)) q))867 ;;Find p in Q such that p is reducible mod Q\{p}868 (setf found nil)869 (dolist (x q)870 (let ((q1 (remove x q)))871 (multiple-value-bind (h c div-count)872 (normal-form ring x q1 nil #| not a top reduction! |# )873 (declare (ignore c))874 (unless (zerop div-count)875 (setf found t q q1)876 (unless (poly-zerop h)877 (setf q (nconc q1 (list h))))878 (return)))))))879 880 (defun minimization (p)881 "Returns a sublist of the polynomial list P spanning the same882 monomial ideal as P but minimal, i.e. no leading monomial883 of a polynomial in the sublist divides the leading monomial884 of another polynomial."885 (do ((q p)886 (found t))887 ((not found) q)888 ;;Find p in Q such that lm(p) is in LM(Q\{p})889 (setf found nil890 q (dolist (x q q)891 (let ((q1 (remove x q)))892 (when (member-if #'(lambda (p) (monom-divides-p (poly-lm x) (poly-lm p))) q1)893 (setf found t)894 (return q1)))))))895 896 (defun poly-normalize (ring p &aux (c (poly-lc p)))897 "Divide a polynomial by its leading coefficient. It assumes898 that the division is possible, which may not always be the899 case in rings which are not fields. The exact division operator900 is assumed to be provided by the RING structure of the901 COEFFICIENT-RING package."902 (mapc #'(lambda (term)903 (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))904 (poly-termlist p))905 p)906 907 (defun poly-normalize-list (ring plist)908 "Divide every polynomial in a list PLIST by its leading coefficient. "909 (mapcar #'(lambda (x) (poly-normalize ring x)) plist))910 911 912 913 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;914 ;;915 ;; Algorithm and Pair heuristic selection916 ;;917 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;918 324 919 325 (defun find-grobner-function (algorithm)
Note:
See TracChangeset
for help on using the changeset viewer.