- Timestamp:
- 2015-09-05T10:13:39-07:00 (9 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/f4grobner/monom.lisp
r3466 r3472 48 48 "MONOM-LEFT-CONTRACT" 49 49 "MAKE-MONOM-VARIABLE" 50 "MONOM->LIST") 50 "MONOM->LIST" 51 "LEX>" 52 "GRLEX>" 53 "REVLEX>" 54 "GREVLEX>" 55 "INVLEX>" 56 "REVERSE-MONOMIAL-ORDER" 57 "MAKE-ELIMINATION-ORDER-FACTORY")) 51 58 52 59 (:documentation … … 325 332 "A human-readable representation of a monomial M as a list of exponents." 326 333 (coerce (monom-exponents m) 'list)) 334 335 336 (in-package :order) 337 338 (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0))) 339 340 ;; pure lexicographic 341 (defgeneric lex> (p q &optional start end) 342 (:documentation "Return T if P>Q with respect to lexicographic 343 order, otherwise NIL. The second returned value is T if P=Q, 344 otherwise it is NIL.") 345 (:method ((p monom) (q monom) &optional (start 0) (end (r-dimension p))) 346 (declare (type fixnum start end)) 347 (do ((i start (1+ i))) 348 ((>= i end) (values nil t)) 349 (cond 350 ((> (r-elt p i) (r-elt q i)) 351 (return-from lex> (values t nil))) 352 ((< (r-elt p i) (r-elt q i)) 353 (return-from lex> (values nil nil))))))) 354 355 ;; total degree order , ties broken by lexicographic 356 (defgeneric grlex> (p q &optional start end) 357 (:documentation "Return T if P>Q with respect to graded 358 lexicographic order, otherwise NIL. The second returned value is T if 359 P=Q, otherwise it is NIL.") 360 (:method ((p monom) (q monom) &optional (start 0) (end (r-dimension p))) 361 (declare (type monom p q) (type fixnum start end)) 362 (let ((d1 (r-total-degree p start end)) 363 (d2 (r-total-degree q start end))) 364 (declare (type fixnum d1 d2)) 365 (cond 366 ((> d1 d2) (values t nil)) 367 ((< d1 d2) (values nil nil)) 368 (t 369 (lex> p q start end)))))) 370 371 372 ;; reverse lexicographic 373 (defgeneric revlex> (p q &optional start end) 374 (:documentation "Return T if P>Q with respect to reverse 375 lexicographic order, NIL otherwise. The second returned value is T if 376 P=Q, otherwise it is NIL. This is not and admissible monomial order 377 because some sets do not have a minimal element. This order is useful 378 in constructing other orders.") 379 (:method ((p monom) (q monom) &optional (start 0) (end (r-dimension p))) 380 (declare (type fixnum start end)) 381 (do ((i (1- end) (1- i))) 382 ((< i start) (values nil t)) 383 (declare (type fixnum i)) 384 (cond 385 ((< (r-elt p i) (r-elt q i)) 386 (return-from revlex> (values t nil))) 387 ((> (r-elt p i) (r-elt q i)) 388 (return-from revlex> (values nil nil))))))) 389 390 391 ;; total degree, ties broken by reverse lexicographic 392 (defgeneric grevlex> (p q &optional start end) 393 (:documentation "Return T if P>Q with respect to graded reverse 394 lexicographic order, NIL otherwise. The second returned value is T if 395 P=Q, otherwise it is NIL.") 396 (:method ((p monom) (q monom) &optional (start 0) (end (r-dimension p))) 397 (declare (type fixnum start end)) 398 (let ((d1 (r-total-degree p start end)) 399 (d2 (r-total-degree q start end))) 400 (declare (type fixnum d1 d2)) 401 (cond 402 ((> d1 d2) (values t nil)) 403 ((< d1 d2) (values nil nil)) 404 (t 405 (revlex> p q start end)))))) 406 407 (defgeneric invlex> (p q &optional start end) 408 (:documentation "Return T if P>Q with respect to inverse 409 lexicographic order, NIL otherwise The second returned value is T if 410 P=Q, otherwise it is NIL.") 411 (:method ((p monom) (q monom) &optional (start 0) (end (r-dimension p))) 412 (declare (type fixnum start end)) 413 (do ((i (1- end) (1- i))) 414 ((< i start) (values nil t)) 415 (declare (type fixnum i)) 416 (cond 417 ((> (r-elt p i) (r-elt q i)) 418 (return-from invlex> (values t nil))) 419 ((< (r-elt p i) (r-elt q i)) 420 (return-from invlex> (values nil nil))))))) 421 422 (defun reverse-monomial-order (order) 423 "Create the inverse monomial order to the given monomial order ORDER." 424 #'(lambda (p q &optional (start 0) (end (r-dimension q))) 425 (declare (type monom p q) (type fixnum start end)) 426 (funcall order q p start end))) 427 428 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 429 ;; 430 ;; Order making functions 431 ;; 432 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 433 434 ;; This returns a closure with the same signature 435 ;; as all orders such as #'LEX>. 436 (defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>)) 437 "It constructs an elimination order used for the 1-st elimination ideal, 438 i.e. for eliminating the first variable. Thus, the order compares the degrees of the 439 first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER." 440 #'(lambda (p q &optional (start 0) (end (r-dimension p))) 441 (declare (type monom p q) (type fixnum start end)) 442 (cond 443 ((> (r-elt p start) (r-elt q start)) 444 (values t nil)) 445 ((< (r-elt p start) (r-elt q start)) 446 (values nil nil)) 447 (t 448 (funcall secondary-elimination-order p q (1+ start) end))))) 449 450 ;; This returns a closure which is called with an integer argument. 451 ;; The result is *another closure* with the same signature as all 452 ;; orders such as #'LEX>. 453 (defun make-elimination-order-factory (&optional 454 (primary-elimination-order #'lex>) 455 (secondary-elimination-order #'lex>)) 456 "Return a function with a single integer argument K. This should be 457 the number of initial K variables X[0],X[1],...,X[K-1], which precede 458 remaining variables. The call to the closure creates a predicate 459 which compares monomials according to the K-th elimination order. The 460 monomial orders PRIMARY-ELIMINATION-ORDER and 461 SECONDARY-ELIMINATION-ORDER are used to compare the first K and the 462 remaining variables, respectively, with ties broken by lexicographical 463 order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T), 464 which indicates that the first K variables appear with identical 465 powers, then the result is that of a call to 466 SECONDARY-ELIMINATION-ORDER applied to the remaining variables 467 X[K],X[K+1],..." 468 #'(lambda (k) 469 (cond 470 ((<= k 0) 471 (error "K must be at least 1")) 472 ((= k 1) 473 (make-elimination-order-factory-1 secondary-elimination-order)) 474 (t 475 #'(lambda (p q &optional (start 0) (end (r-dimension p))) 476 (declare (type monom p q) (type fixnum start end)) 477 (multiple-value-bind (primary equal) 478 (funcall primary-elimination-order p q start k) 479 (if equal 480 (funcall secondary-elimination-order p q k end) 481 (values primary nil)))))))) 482
Note:
See TracChangeset
for help on using the changeset viewer.