- Timestamp:
- 2015-06-16T14:34:12-07:00 (9 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/f4grobner/pol.lisp
r1997 r1998 23 23 ;; 24 24 ;; Polynomials implemented in CLOS 25 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 26 ;; 27 ;; A polynomial is an collection of terms. A 28 ;; term has a monomial and a coefficient. 29 ;; 30 ;; A polynomial can be represented by an s-expp 31 ;; (EXPR . VARS) where EXPR is an arithmetical formula 32 ;; recursively built of the arithmetical operations, 33 ;; and VARS are the variables of the polynomial. 34 ;; If a subtree of this s-exp is not an arithmetical 35 ;; operator +, -, *, expt, and is not a member 36 ;; of VARS then it represents a scalar expression 37 ;; which the Lisp reader must know how to convert 38 ;; into an object for which can be multiplied by a variable, 39 ;; subject to commutativity and associativity rules. 40 ;; 25 41 ;; 26 42 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
Note:
See TracChangeset
for help on using the changeset viewer.