| 1 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
|
---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 3 | ;;;
|
---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
| 5 | ;;;
|
---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
| 9 | ;;; (at your option) any later version.
|
---|
| 10 | ;;;
|
---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | ;;; GNU General Public License for more details.
|
---|
| 15 | ;;;
|
---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 19 | ;;;
|
---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 21 |
|
---|
| 22 | (in-package :maxima)
|
---|
| 23 |
|
---|
| 24 | (macsyma-module cgb-maxima)
|
---|
| 25 |
|
---|
| 26 | (eval-when
|
---|
| 27 | #+gcl (load eval)
|
---|
| 28 | #-gcl (:load-toplevel :execute)
|
---|
| 29 | (format t "~&Loading maxima-grobner ~a ~a~%"
|
---|
| 30 | "$Revision: 1.1 $" "$Date: 2008/09/08 21:40:10 $"))
|
---|
| 31 |
|
---|
| 32 | ;;FUNCTS is loaded because it contains the definition of LCM
|
---|
| 33 | ($load "functs")
|
---|
| 34 |
|
---|
| 35 | ;; Macros for making lists with iterators - an exammple of GENSYM
|
---|
| 36 | ;; MAKELIST-1 makes a list with one iterator, while MAKELIST accepts an
|
---|
| 37 | ;; arbitrary number of iterators
|
---|
| 38 |
|
---|
| 39 | ;; Sample usage:
|
---|
| 40 | ;; Without a step:
|
---|
| 41 | ;; >(makelist-1 (* 2 i) i 0 10)
|
---|
| 42 | ;; (0 2 4 6 8 10 12 14 16 18 20)
|
---|
| 43 | ;; With a step of 3:
|
---|
| 44 | ;; >(makelist-1 (* 2 i) i 0 10 3)
|
---|
| 45 | ;; (0 6 12 18)
|
---|
| 46 |
|
---|
| 47 | ;; Generate sums of squares of numbers between 1 and 4:
|
---|
| 48 | ;; >(makelist (+ (* i i) (* j j)) (i 1 4) (j 1 i))
|
---|
| 49 | ;; (2 5 8 10 13 18 17 20 25 32)
|
---|
| 50 | ;; >(makelist (list i j '---> (+ (* i i) (* j j))) (i 1 4) (j 1 i))
|
---|
| 51 | ;; ((1 1 ---> 2) (2 1 ---> 5) (2 2 ---> 8) (3 1 ---> 10) (3 2 ---> 13)
|
---|
| 52 | ;; (3 3 ---> 18) (4 1 ---> 17) (4 2 ---> 20) (4 3 ---> 25) (4 4 ---> 32))
|
---|
| 53 |
|
---|
| 54 | ;; Evaluate expression expr with variable set to lo, lo+1,... ,hi
|
---|
| 55 | ;; and put the results in a list.
|
---|
| 56 | (defmacro makelist-1 (expr var lo hi &optional (step 1))
|
---|
| 57 | (let ((l (gensym)))
|
---|
| 58 | `(do ((,var ,lo (+ ,var ,step))
|
---|
| 59 | (,l nil (cons ,expr ,l)))
|
---|
| 60 | ((> ,var ,hi) (reverse ,l))
|
---|
| 61 | (declare (fixnum ,var)))))
|
---|
| 62 |
|
---|
| 63 | (defmacro makelist (expr (var lo hi &optional (step 1)) &rest more)
|
---|
| 64 | (if (endp more)
|
---|
| 65 | `(makelist-1 ,expr ,var ,lo ,hi ,step)
|
---|
| 66 | (let* ((l (gensym)))
|
---|
| 67 | `(do ((,var ,lo (+ ,var ,step))
|
---|
| 68 | (,l nil (nconc ,l `,(makelist ,expr ,@more))))
|
---|
| 69 | ((> ,var ,hi) ,l)
|
---|
| 70 | (declare (fixnum ,var))))))
|
---|
| 71 |
|
---|
| 72 | ;;----------------------------------------------------------------
|
---|
| 73 | ;; This package implements BASIC OPERATIONS ON MONOMIALS
|
---|
| 74 | ;;----------------------------------------------------------------
|
---|
| 75 | ;; DATA STRUCTURES: Monomials are represented as lists:
|
---|
| 76 | ;;
|
---|
| 77 | ;; monom: (n1 n2 ... nk) where ni are non-negative integers
|
---|
| 78 | ;;
|
---|
| 79 | ;; However, lists may be implemented as other sequence types,
|
---|
| 80 | ;; so the flexibility to change the representation should be
|
---|
| 81 | ;; maintained in the code to use general operations on sequences
|
---|
| 82 | ;; whenever possible. The optimization for the actual representation
|
---|
| 83 | ;; should be left to declarations and the compiler.
|
---|
| 84 | ;;----------------------------------------------------------------
|
---|
| 85 | ;; EXAMPLES: Suppose that variables are x and y. Then
|
---|
| 86 | ;;
|
---|
| 87 | ;; Monom x*y^2 ---> (1 2)
|
---|
| 88 | ;;
|
---|
| 89 | ;;----------------------------------------------------------------
|
---|
| 90 |
|
---|
| 91 | (deftype exponent ()
|
---|
| 92 | "Type of exponent in a monomial."
|
---|
| 93 | 'fixnum)
|
---|
| 94 |
|
---|
| 95 | (deftype monom (&optional dim)
|
---|
| 96 | "Type of monomial."
|
---|
| 97 | `(simple-array exponent (,dim)))
|
---|
| 98 |
|
---|
| 99 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 100 | ;;
|
---|
| 101 | ;; Construction of monomials
|
---|
| 102 | ;;
|
---|
| 103 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 104 |
|
---|
| 105 | (defmacro make-monom (dim &key (initial-contents nil initial-contents-supplied-p)
|
---|
| 106 | (initial-element 0 initial-element-supplied-p))
|
---|
| 107 | "Make a monomial with DIM variables. Additional argument
|
---|
| 108 | INITIAL-CONTENTS specifies the list of powers of the consecutive
|
---|
| 109 | variables. The alternative additional argument INITIAL-ELEMENT
|
---|
| 110 | specifies the common power for all variables."
|
---|
| 111 | ;;(declare (fixnum dim))
|
---|
| 112 | `(make-array ,dim
|
---|
| 113 | :element-type 'exponent
|
---|
| 114 | ,@(when initial-contents-supplied-p `(:initial-contents ,initial-contents))
|
---|
| 115 | ,@(when initial-element-supplied-p `(:initial-element ,initial-element))))
|
---|
| 116 |
|
---|
| 117 | |
---|
| 118 |
|
---|
| 119 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 120 | ;;
|
---|
| 121 | ;; Operations on monomials
|
---|
| 122 | ;;
|
---|
| 123 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 124 |
|
---|
| 125 | (defmacro monom-elt (m index)
|
---|
| 126 | "Return the power in the monomial M of variable number INDEX."
|
---|
| 127 | `(elt ,m ,index))
|
---|
| 128 |
|
---|
| 129 | (defun monom-dimension (m)
|
---|
| 130 | "Return the number of variables in the monomial M."
|
---|
| 131 | (length m))
|
---|
| 132 |
|
---|
| 133 | (defun monom-total-degree (m &optional (start 0) (end (length m)))
|
---|
| 134 | "Return the todal degree of a monomoal M. Optinally, a range
|
---|
| 135 | of variables may be specified with arguments START and END."
|
---|
| 136 | (declare (type monom m) (fixnum start end))
|
---|
| 137 | (reduce #'+ m :start start :end end))
|
---|
| 138 |
|
---|
| 139 | (defun monom-sugar (m &aux (start 0) (end (length m)))
|
---|
| 140 | "Return the sugar of a monomial M. Optinally, a range
|
---|
| 141 | of variables may be specified with arguments START and END."
|
---|
| 142 | (declare (type monom m) (fixnum start end))
|
---|
| 143 | (monom-total-degree m start end))
|
---|
| 144 |
|
---|
| 145 | (defun monom-div (m1 m2 &aux (result (copy-seq m1)))
|
---|
| 146 | "Divide monomial M1 by monomial M2."
|
---|
| 147 | (declare (type monom m1 m2 result))
|
---|
| 148 | (map-into result #'- m1 m2))
|
---|
| 149 |
|
---|
| 150 | (defun monom-mul (m1 m2 &aux (result (copy-seq m1)))
|
---|
| 151 | "Multiply monomial M1 by monomial M2."
|
---|
| 152 | (declare (type monom m1 m2 result))
|
---|
| 153 | (map-into result #'+ m1 m2))
|
---|
| 154 |
|
---|
| 155 | (defun monom-divides-p (m1 m2)
|
---|
| 156 | "Returns T if monomial M1 divides monomial M2, NIL otherwise."
|
---|
| 157 | (declare (type monom m1 m2))
|
---|
| 158 | (every #'<= m1 m2))
|
---|
| 159 |
|
---|
| 160 | (defun monom-divides-monom-lcm-p (m1 m2 m3)
|
---|
| 161 | "Returns T if monomial M1 divides MONOM-LCM(M2,M3), NIL otherwise."
|
---|
| 162 | (declare (type monom m1 m2 m3))
|
---|
| 163 | (every #'(lambda (x y z) (declare (type exponent x y z)) (<= x (max y z))) m1 m2 m3))
|
---|
| 164 |
|
---|
| 165 | (defun monom-lcm-divides-monom-lcm-p (m1 m2 m3 m4)
|
---|
| 166 | "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
|
---|
| 167 | (declare (type monom m1 m2 m3 m4))
|
---|
| 168 | (every #'(lambda (x y z w) (declare (type exponent x y z w)) (<= (max x y) (max z w))) m1 m2 m3 m4))
|
---|
| 169 |
|
---|
| 170 | (defun monom-lcm-equal-monom-lcm-p (m1 m2 m3 m4)
|
---|
| 171 | "Returns T if monomial MONOM-LCM(M1,M2) equals MONOM-LCM(M3,M4), NIL otherwise."
|
---|
| 172 | (declare (type monom m1 m2 m3 m4))
|
---|
| 173 | (every #'(lambda (x y z w) (declare (type exponent x y z w)) (= (max x y) (max z w))) m1 m2 m3 m4))
|
---|
| 174 |
|
---|
| 175 | (defun monom-divisible-by-p (m1 m2)
|
---|
| 176 | "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
|
---|
| 177 | (declare (type monom m1 m2))
|
---|
| 178 | (every #'>= m1 m2))
|
---|
| 179 |
|
---|
| 180 | (defun monom-rel-prime-p (m1 m2)
|
---|
| 181 | "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
|
---|
| 182 | (declare (type monom m1 m2))
|
---|
| 183 | (every #'(lambda (x y) (declare (type exponent x y)) (zerop (min x y))) m1 m2))
|
---|
| 184 |
|
---|
| 185 | (defun monom-equal-p (m1 m2)
|
---|
| 186 | "Returns T if two monomials M1 and M2 are equal."
|
---|
| 187 | (declare (type monom m1 m2))
|
---|
| 188 | (every #'= m1 m2))
|
---|
| 189 |
|
---|
| 190 | (defun monom-lcm (m1 m2 &aux (result (copy-seq m1)))
|
---|
| 191 | "Returns least common multiple of monomials M1 and M2."
|
---|
| 192 | (declare (type monom m1 m2))
|
---|
| 193 | (map-into result #'max m1 m2))
|
---|
| 194 |
|
---|
| 195 | (defun monom-gcd (m1 m2 &aux (result (copy-seq m1)))
|
---|
| 196 | "Returns greatest common divisor of monomials M1 and M2."
|
---|
| 197 | (declare (type monom m1 m2))
|
---|
| 198 | (map-into result #'min m1 m2))
|
---|
| 199 |
|
---|
| 200 | (defun monom-depends-p (m k)
|
---|
| 201 | "Return T if the monomial M depends on variable number K."
|
---|
| 202 | (declare (type monom m) (fixnum k))
|
---|
| 203 | (plusp (elt m k)))
|
---|
| 204 |
|
---|
| 205 | (defmacro monom-map (fun m &rest ml &aux (result `(copy-seq ,m)))
|
---|
| 206 | `(map-into ,result ,fun ,m ,@ml))
|
---|
| 207 |
|
---|
| 208 | (defmacro monom-append (m1 m2)
|
---|
| 209 | `(concatenate 'monom ,m1 ,m2))
|
---|
| 210 |
|
---|
| 211 | (defmacro monom-contract (k m)
|
---|
| 212 | `(subseq ,m ,k))
|
---|
| 213 |
|
---|
| 214 | (defun monom-exponents (m)
|
---|
| 215 | (declare (type monom m))
|
---|
| 216 | (coerce m 'list))
|
---|
| 217 |
|
---|
| 218 | |
---|
| 219 |
|
---|
| 220 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 221 | ;;
|
---|
| 222 | ;; Implementations of various admissible monomial orders
|
---|
| 223 | ;;
|
---|
| 224 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 225 |
|
---|
| 226 | ;; pure lexicographic
|
---|
| 227 | (defun lex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
| 228 | "Return T if P>Q with respect to lexicographic order, otherwise NIL.
|
---|
| 229 | The second returned value is T if P=Q, otherwise it is NIL."
|
---|
| 230 | (declare (type monom p q) (type fixnum start end))
|
---|
| 231 | (do ((i start (1+ i)))
|
---|
| 232 | ((>= i end) (values nil t))
|
---|
| 233 | (declare (type fixnum i))
|
---|
| 234 | (cond
|
---|
| 235 | ((> (monom-elt p i) (monom-elt q i))
|
---|
| 236 | (return-from lex> (values t nil)))
|
---|
| 237 | ((< (monom-elt p i) (monom-elt q i))
|
---|
| 238 | (return-from lex> (values nil nil))))))
|
---|
| 239 |
|
---|
| 240 | ;; total degree order , ties broken by lexicographic
|
---|
| 241 | (defun grlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
| 242 | "Return T if P>Q with respect to graded lexicographic order, otherwise NIL.
|
---|
| 243 | The second returned value is T if P=Q, otherwise it is NIL."
|
---|
| 244 | (declare (type monom p q) (type fixnum start end))
|
---|
| 245 | (let ((d1 (monom-total-degree p start end))
|
---|
| 246 | (d2 (monom-total-degree q start end)))
|
---|
| 247 | (cond
|
---|
| 248 | ((> d1 d2) (values t nil))
|
---|
| 249 | ((< d1 d2) (values nil nil))
|
---|
| 250 | (t
|
---|
| 251 | (lex> p q start end)))))
|
---|
| 252 |
|
---|
| 253 |
|
---|
| 254 | ;; total degree, ties broken by reverse lexicographic
|
---|
| 255 | (defun grevlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
| 256 | "Return T if P>Q with respect to graded reverse lexicographic order,
|
---|
| 257 | NIL otherwise. The second returned value is T if P=Q, otherwise it is NIL."
|
---|
| 258 | (declare (type monom p q) (type fixnum start end))
|
---|
| 259 | (let ((d1 (monom-total-degree p start end))
|
---|
| 260 | (d2 (monom-total-degree q start end)))
|
---|
| 261 | (cond
|
---|
| 262 | ((> d1 d2) (values t nil))
|
---|
| 263 | ((< d1 d2) (values nil nil))
|
---|
| 264 | (t
|
---|
| 265 | (revlex> p q start end)))))
|
---|
| 266 |
|
---|
| 267 |
|
---|
| 268 | ;; reverse lexicographic
|
---|
| 269 | (defun revlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
| 270 | "Return T if P>Q with respect to reverse lexicographic order, NIL
|
---|
| 271 | otherwise. The second returned value is T if P=Q, otherwise it is
|
---|
| 272 | NIL. This is not and admissible monomial order because some sets do
|
---|
| 273 | not have a minimal element. This order is useful in constructing other
|
---|
| 274 | orders."
|
---|
| 275 | (declare (type monom p q) (type fixnum start end))
|
---|
| 276 | (do ((i (1- end) (1- i)))
|
---|
| 277 | ((< i start) (values nil t))
|
---|
| 278 | (declare (type fixnum i))
|
---|
| 279 | (cond
|
---|
| 280 | ((< (monom-elt p i) (monom-elt q i))
|
---|
| 281 | (return-from revlex> (values t nil)))
|
---|
| 282 | ((> (monom-elt p i) (monom-elt q i))
|
---|
| 283 | (return-from revlex> (values nil nil))))))
|
---|
| 284 |
|
---|
| 285 |
|
---|
| 286 | (defun invlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
| 287 | "Return T if P>Q with respect to inverse lexicographic order, NIL otherwise
|
---|
| 288 | The second returned value is T if P=Q, otherwise it is NIL."
|
---|
| 289 | (declare (type monom p q) (type fixnum start end))
|
---|
| 290 | (do ((i (1- end) (1- i)))
|
---|
| 291 | ((< i start) (values nil t))
|
---|
| 292 | (declare (type fixnum i))
|
---|
| 293 | (cond
|
---|
| 294 | ((> (monom-elt p i) (monom-elt q i))
|
---|
| 295 | (return-from invlex> (values t nil)))
|
---|
| 296 | ((< (monom-elt p i) (monom-elt q i))
|
---|
| 297 | (return-from invlex> (values nil nil))))))
|
---|
| 298 |
|
---|
| 299 | |
---|
| 300 |
|
---|
| 301 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 302 | ;;
|
---|
| 303 | ;; Order making functions
|
---|
| 304 | ;;
|
---|
| 305 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 306 |
|
---|
| 307 | (defvar *monomial-order* #'lex>
|
---|
| 308 | "Default order for monomial comparisons")
|
---|
| 309 |
|
---|
| 310 | (defmacro monomial-order (x y)
|
---|
| 311 | `(funcall *monomial-order* ,x ,y))
|
---|
| 312 |
|
---|
| 313 | (defun reverse-monomial-order (x y)
|
---|
| 314 | (monomial-order y x))
|
---|
| 315 |
|
---|
| 316 | (defvar *primary-elimination-order* #'lex>)
|
---|
| 317 |
|
---|
| 318 | (defvar *secondary-elimination-order* #'lex>)
|
---|
| 319 |
|
---|
| 320 | (defvar *elimination-order* nil
|
---|
| 321 | "Default elimination order used in elimination-based functions.
|
---|
| 322 | If not NIL, it is assumed to be a proper elimination order. If NIL,
|
---|
| 323 | we will construct an elimination order using the values of
|
---|
| 324 | *PRIMARY-ELIMINATION-ORDER* and *SECONDARY-ELIMINATION-ORDER*.")
|
---|
| 325 |
|
---|
| 326 | (defun elimination-order (k)
|
---|
| 327 | "Return a predicate which compares monomials according to the
|
---|
| 328 | K-th elimination order. Two variables *PRIMARY-ELIMINATION-ORDER*
|
---|
| 329 | and *SECONDARY-ELIMINATION-ORDER* control the behavior on the first K
|
---|
| 330 | and the remaining variables, respectively."
|
---|
| 331 | (declare (type fixnum k))
|
---|
| 332 | #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
|
---|
| 333 | (declare (type monom p q) (type fixnum start end))
|
---|
| 334 | (multiple-value-bind (primary equal)
|
---|
| 335 | (funcall *primary-elimination-order* p q start k)
|
---|
| 336 | (if equal
|
---|
| 337 | (funcall *secondary-elimination-order* p q k end)
|
---|
| 338 | (values primary nil)))))
|
---|
| 339 |
|
---|
| 340 | (defun elimination-order-1 (p q &optional (start 0) (end (monom-dimension p)))
|
---|
| 341 | "Equivalent to the function returned by the call to (ELIMINATION-ORDER 1)."
|
---|
| 342 | (declare (type monom p q) (type fixnum start end))
|
---|
| 343 | (cond
|
---|
| 344 | ((> (monom-elt p start) (monom-elt q start)) (values t nil))
|
---|
| 345 | ((< (monom-elt p start) (monom-elt q start)) (values nil nil))
|
---|
| 346 | (t (funcall *secondary-elimination-order* p q (1+ start) end))))
|
---|
| 347 |
|
---|
| 348 | |
---|
| 349 |
|
---|
| 350 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 351 | ;;
|
---|
| 352 | ;; Priority queue stuff
|
---|
| 353 | ;;
|
---|
| 354 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 355 |
|
---|
| 356 | (defparameter *priority-queue-allocation-size* 16)
|
---|
| 357 |
|
---|
| 358 | (defun priority-queue-make-heap (&key (element-type 'fixnum))
|
---|
| 359 | (make-array *priority-queue-allocation-size* :element-type element-type :fill-pointer 1
|
---|
| 360 | :adjustable t))
|
---|
| 361 |
|
---|
| 362 | (defstruct (priority-queue (:constructor priority-queue-construct))
|
---|
| 363 | (heap (priority-queue-make-heap))
|
---|
| 364 | test)
|
---|
| 365 |
|
---|
| 366 | (defun make-priority-queue (&key (element-type 'fixnum)
|
---|
| 367 | (test #'<=)
|
---|
| 368 | (element-key #'identity))
|
---|
| 369 | (priority-queue-construct
|
---|
| 370 | :heap (priority-queue-make-heap :element-type element-type)
|
---|
| 371 | :test #'(lambda (x y) (funcall test (funcall element-key y) (funcall element-key x)))))
|
---|
| 372 |
|
---|
| 373 | (defun priority-queue-insert (pq item)
|
---|
| 374 | (priority-queue-heap-insert (priority-queue-heap pq) item (priority-queue-test pq)))
|
---|
| 375 |
|
---|
| 376 | (defun priority-queue-remove (pq)
|
---|
| 377 | (priority-queue-heap-remove (priority-queue-heap pq) (priority-queue-test pq)))
|
---|
| 378 |
|
---|
| 379 | (defun priority-queue-empty-p (pq)
|
---|
| 380 | (priority-queue-heap-empty-p (priority-queue-heap pq)))
|
---|
| 381 |
|
---|
| 382 | (defun priority-queue-size (pq)
|
---|
| 383 | (fill-pointer (priority-queue-heap pq)))
|
---|
| 384 |
|
---|
| 385 | (defun priority-queue-upheap (a k
|
---|
| 386 | &optional
|
---|
| 387 | (test #'<=)
|
---|
| 388 | &aux (v (aref a k)))
|
---|
| 389 | (declare (fixnum k))
|
---|
| 390 | (assert (< 0 k (fill-pointer a)))
|
---|
| 391 | (loop
|
---|
| 392 | (let ((parent (ash k -1)))
|
---|
| 393 | (when (zerop parent) (return))
|
---|
| 394 | (unless (funcall test (aref a parent) v)
|
---|
| 395 | (return))
|
---|
| 396 | (setf (aref a k) (aref a parent)
|
---|
| 397 | k parent)))
|
---|
| 398 | (setf (aref a k) v)
|
---|
| 399 | a)
|
---|
| 400 |
|
---|
| 401 |
|
---|
| 402 | (defun priority-queue-heap-insert (a item &optional (test #'<=))
|
---|
| 403 | (vector-push-extend item a)
|
---|
| 404 | (priority-queue-upheap a (1- (fill-pointer a)) test))
|
---|
| 405 |
|
---|
| 406 | (defun priority-queue-downheap (a k
|
---|
| 407 | &optional
|
---|
| 408 | (test #'<=)
|
---|
| 409 | &aux (v (aref a k)) (j 0) (n (fill-pointer a)))
|
---|
| 410 | (declare (fixnum k n j))
|
---|
| 411 | (loop
|
---|
| 412 | (unless (<= k (ash n -1))
|
---|
| 413 | (return))
|
---|
| 414 | (setf j (ash k 1))
|
---|
| 415 | (if (and (< j n) (not (funcall test (aref a (1+ j)) (aref a j))))
|
---|
| 416 | (incf j))
|
---|
| 417 | (when (funcall test (aref a j) v)
|
---|
| 418 | (return))
|
---|
| 419 | (setf (aref a k) (aref a j)
|
---|
| 420 | k j))
|
---|
| 421 | (setf (aref a k) v)
|
---|
| 422 | a)
|
---|
| 423 |
|
---|
| 424 | (defun priority-queue-heap-remove (a &optional (test #'<=) &aux (v (aref a 1)))
|
---|
| 425 | (when (<= (fill-pointer a) 1) (error "Empty queue."))
|
---|
| 426 | (setf (aref a 1) (vector-pop a))
|
---|
| 427 | (priority-queue-downheap a 1 test)
|
---|
| 428 | (values v a))
|
---|
| 429 |
|
---|
| 430 | (defun priority-queue-heap-empty-p (a)
|
---|
| 431 | (<= (fill-pointer a) 1))
|
---|
| 432 |
|
---|
| 433 | |
---|
| 434 |
|
---|
| 435 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 436 | ;;
|
---|
| 437 | ;; Global switches
|
---|
| 438 | ;; (Can be used in Maxima just fine)
|
---|
| 439 | ;;
|
---|
| 440 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 441 |
|
---|
| 442 | (defmvar $poly_monomial_order '$lex
|
---|
| 443 | "This switch controls which monomial order is used in polynomial
|
---|
| 444 | and Grobner basis calculations. If not set, LEX will be used")
|
---|
| 445 |
|
---|
| 446 | (defmvar $poly_coefficient_ring '$expression_ring
|
---|
| 447 | "This switch indicates the coefficient ring of the polynomials
|
---|
| 448 | that will be used in grobner calculations. If not set, Maxima's
|
---|
| 449 | general expression ring will be used. This variable may be set
|
---|
| 450 | to RING_OF_INTEGERS if desired.")
|
---|
| 451 |
|
---|
| 452 | (defmvar $poly_primary_elimination_order nil
|
---|
| 453 | "Name of the default order for eliminated variables in elimination-based functions.
|
---|
| 454 | If not set, LEX will be used.")
|
---|
| 455 |
|
---|
| 456 | (defmvar $poly_secondary_elimination_order nil
|
---|
| 457 | "Name of the default order for kept variables in elimination-based functions.
|
---|
| 458 | If not set, LEX will be used.")
|
---|
| 459 |
|
---|
| 460 | (defmvar $poly_elimination_order nil
|
---|
| 461 | "Name of the default elimination order used in elimination calculations.
|
---|
| 462 | If set, it overrides the settings in variables POLY_PRIMARY_ELIMINATION_ORDER
|
---|
| 463 | and SECONDARY_ELIMINATION_ORDER. The user must ensure that this is a true
|
---|
| 464 | elimination order valid for the number of eliminated variables.")
|
---|
| 465 |
|
---|
| 466 | (defmvar $poly_return_term_list nil
|
---|
| 467 | "If set to T, all functions in this package will return each polynomial as a
|
---|
| 468 | list of terms in the current monomial order rather than a Maxima general expression.")
|
---|
| 469 |
|
---|
| 470 | (defmvar $poly_grobner_debug nil
|
---|
| 471 | "If set to TRUE, produce debugging and tracing output.")
|
---|
| 472 |
|
---|
| 473 | (defmvar $poly_grobner_algorithm '$buchberger
|
---|
| 474 | "The name of the algorithm used to find grobner bases.")
|
---|
| 475 |
|
---|
| 476 | (defmvar $poly_top_reduction_only nil
|
---|
| 477 | "If not FALSE, use top reduction only whenever possible.
|
---|
| 478 | Top reduction means that division algorithm stops after the first reduction.")
|
---|
| 479 |
|
---|
| 480 | |
---|
| 481 |
|
---|
| 482 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 483 | ;;
|
---|
| 484 | ;; Coefficient ring operations
|
---|
| 485 | ;;
|
---|
| 486 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 487 | ;;
|
---|
| 488 | ;; These are ALL operations that are performed on the coefficients by
|
---|
| 489 | ;; the package, and thus the coefficient ring can be changed by merely
|
---|
| 490 | ;; redefining these operations.
|
---|
| 491 | ;;
|
---|
| 492 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 493 |
|
---|
| 494 | (defstruct (ring)
|
---|
| 495 | (parse #'identity :type function)
|
---|
| 496 | (unit #'identity :type function)
|
---|
| 497 | (zerop #'identity :type function)
|
---|
| 498 | (add #'identity :type function)
|
---|
| 499 | (sub #'identity :type function)
|
---|
| 500 | (uminus #'identity :type function)
|
---|
| 501 | (mul #'identity :type function)
|
---|
| 502 | (div #'identity :type function)
|
---|
| 503 | (lcm #'identity :type function)
|
---|
| 504 | (ezgcd #'identity :type function)
|
---|
| 505 | (gcd #'identity :type function))
|
---|
| 506 |
|
---|
| 507 | (defparameter *ring-of-integers*
|
---|
| 508 | (make-ring
|
---|
| 509 | :parse #'identity
|
---|
| 510 | :unit #'(lambda () 1)
|
---|
| 511 | :zerop #'zerop
|
---|
| 512 | :add #'+
|
---|
| 513 | :sub #'-
|
---|
| 514 | :uminus #'-
|
---|
| 515 | :mul #'*
|
---|
| 516 | :div #'/
|
---|
| 517 | :lcm #'lcm
|
---|
| 518 | :ezgcd #'(lambda (x y &aux (c (gcd x y))) (values c (/ x c) (/ y c)))
|
---|
| 519 | :gcd #'gcd)
|
---|
| 520 | "The ring of integers.")
|
---|
| 521 |
|
---|
| 522 | |
---|
| 523 |
|
---|
| 524 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 525 | ;;
|
---|
| 526 | ;; This is how we perform operations on coefficients
|
---|
| 527 | ;; using Maxima functions.
|
---|
| 528 | ;;
|
---|
| 529 | ;; Functions and macros dealing with internal representation structure
|
---|
| 530 | ;;
|
---|
| 531 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 532 |
|
---|
| 533 | (defun make-term-variable (ring nvars pos
|
---|
| 534 | &optional
|
---|
| 535 | (power 1)
|
---|
| 536 | (coeff (funcall (ring-unit ring)))
|
---|
| 537 | &aux
|
---|
| 538 | (monom (make-monom nvars :initial-element 0)))
|
---|
| 539 | (declare (fixnum nvars pos power))
|
---|
| 540 | (incf (monom-elt monom pos) power)
|
---|
| 541 | (make-term monom coeff))
|
---|
| 542 |
|
---|
| 543 | (defstruct (term
|
---|
| 544 | (:constructor make-term (monom coeff))
|
---|
| 545 | ;;(:constructor make-term-variable)
|
---|
| 546 | ;;(:type list)
|
---|
| 547 | )
|
---|
| 548 | (monom (make-monom 0) :type monom)
|
---|
| 549 | (coeff nil))
|
---|
| 550 |
|
---|
| 551 | (defun term-sugar (term)
|
---|
| 552 | (monom-sugar (term-monom term)))
|
---|
| 553 |
|
---|
| 554 | (defun termlist-sugar (p &aux (sugar -1))
|
---|
| 555 | (declare (fixnum sugar))
|
---|
| 556 | (dolist (term p sugar)
|
---|
| 557 | (setf sugar (max sugar (term-sugar term)))))
|
---|
| 558 |
|
---|
| 559 |
|
---|
| 560 | |
---|
| 561 |
|
---|
| 562 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 563 | ;;
|
---|
| 564 | ;; Low-level polynomial arithmetic done on
|
---|
| 565 | ;; lists of terms
|
---|
| 566 | ;;
|
---|
| 567 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 568 |
|
---|
| 569 | (defmacro termlist-lt (p) `(car ,p))
|
---|
| 570 | (defun termlist-lm (p) (term-monom (termlist-lt p)))
|
---|
| 571 | (defun termlist-lc (p) (term-coeff (termlist-lt p)))
|
---|
| 572 |
|
---|
| 573 | (define-modify-macro scalar-mul (c) coeff-mul)
|
---|
| 574 |
|
---|
| 575 | (defun scalar-times-termlist (ring c p)
|
---|
| 576 | "Multiply scalar C by a polynomial P. This function works
|
---|
| 577 | even if there are divisors of 0."
|
---|
| 578 | (mapcan
|
---|
| 579 | #'(lambda (term)
|
---|
| 580 | (let ((c1 (funcall (ring-mul ring) c (term-coeff term))))
|
---|
| 581 | (unless (funcall (ring-zerop ring) c1)
|
---|
| 582 | (list (make-term (term-monom term) c1)))))
|
---|
| 583 | p))
|
---|
| 584 |
|
---|
| 585 |
|
---|
| 586 | (defun term-mul (ring term1 term2)
|
---|
| 587 | "Returns (LIST TERM) wheter TERM is the product of the terms TERM1 TERM2,
|
---|
| 588 | or NIL when the product is 0. This definition takes care of divisors of 0
|
---|
| 589 | in the coefficient ring."
|
---|
| 590 | (let ((c (funcall (ring-mul ring) (term-coeff term1) (term-coeff term2))))
|
---|
| 591 | (unless (funcall (ring-zerop ring) c)
|
---|
| 592 | (list (make-term (monom-mul (term-monom term1) (term-monom term2)) c)))))
|
---|
| 593 |
|
---|
| 594 | (defun term-times-termlist (ring term f)
|
---|
| 595 | (declare (type ring ring))
|
---|
| 596 | (mapcan #'(lambda (term-f) (term-mul ring term term-f)) f))
|
---|
| 597 |
|
---|
| 598 | (defun termlist-times-term (ring f term)
|
---|
| 599 | (mapcan #'(lambda (term-f) (term-mul ring term-f term)) f))
|
---|
| 600 |
|
---|
| 601 | (defun monom-times-term (m term)
|
---|
| 602 | (make-term (monom-mul m (term-monom term)) (term-coeff term)))
|
---|
| 603 |
|
---|
| 604 | (defun monom-times-termlist (m f)
|
---|
| 605 | (cond
|
---|
| 606 | ((null f) nil)
|
---|
| 607 | (t
|
---|
| 608 | (mapcar #'(lambda (x) (monom-times-term m x)) f))))
|
---|
| 609 |
|
---|
| 610 | (defun termlist-uminus (ring f)
|
---|
| 611 | (mapcar #'(lambda (x)
|
---|
| 612 | (make-term (term-monom x) (funcall (ring-uminus ring) (term-coeff x))))
|
---|
| 613 | f))
|
---|
| 614 |
|
---|
| 615 | (defun termlist-add (ring p q)
|
---|
| 616 | (declare (type list p q))
|
---|
| 617 | (do (r)
|
---|
| 618 | ((cond
|
---|
| 619 | ((endp p)
|
---|
| 620 | (setf r (revappend r q)) t)
|
---|
| 621 | ((endp q)
|
---|
| 622 | (setf r (revappend r p)) t)
|
---|
| 623 | (t
|
---|
| 624 | (multiple-value-bind
|
---|
| 625 | (lm-greater lm-equal)
|
---|
| 626 | (monomial-order (termlist-lm p) (termlist-lm q))
|
---|
| 627 | (cond
|
---|
| 628 | (lm-equal
|
---|
| 629 | (let ((s (funcall (ring-add ring) (termlist-lc p) (termlist-lc q))))
|
---|
| 630 | (unless (funcall (ring-zerop ring) s) ;check for cancellation
|
---|
| 631 | (setf r (cons (make-term (termlist-lm p) s) r)))
|
---|
| 632 | (setf p (cdr p) q (cdr q))))
|
---|
| 633 | (lm-greater
|
---|
| 634 | (setf r (cons (car p) r)
|
---|
| 635 | p (cdr p)))
|
---|
| 636 | (t (setf r (cons (car q) r)
|
---|
| 637 | q (cdr q)))))
|
---|
| 638 | nil))
|
---|
| 639 | r)))
|
---|
| 640 |
|
---|
| 641 | (defun termlist-sub (ring p q)
|
---|
| 642 | (declare (type list p q))
|
---|
| 643 | (do (r)
|
---|
| 644 | ((cond
|
---|
| 645 | ((endp p)
|
---|
| 646 | (setf r (revappend r (termlist-uminus ring q)))
|
---|
| 647 | t)
|
---|
| 648 | ((endp q)
|
---|
| 649 | (setf r (revappend r p))
|
---|
| 650 | t)
|
---|
| 651 | (t
|
---|
| 652 | (multiple-value-bind
|
---|
| 653 | (mgreater mequal)
|
---|
| 654 | (monomial-order (termlist-lm p) (termlist-lm q))
|
---|
| 655 | (cond
|
---|
| 656 | (mequal
|
---|
| 657 | (let ((s (funcall (ring-sub ring) (termlist-lc p) (termlist-lc q))))
|
---|
| 658 | (unless (funcall (ring-zerop ring) s) ;check for cancellation
|
---|
| 659 | (setf r (cons (make-term (termlist-lm p) s) r)))
|
---|
| 660 | (setf p (cdr p) q (cdr q))))
|
---|
| 661 | (mgreater
|
---|
| 662 | (setf r (cons (car p) r)
|
---|
| 663 | p (cdr p)))
|
---|
| 664 | (t (setf r (cons (make-term (termlist-lm q) (funcall (ring-uminus ring) (termlist-lc q))) r)
|
---|
| 665 | q (cdr q)))))
|
---|
| 666 | nil))
|
---|
| 667 | r)))
|
---|
| 668 |
|
---|
| 669 | ;; Multiplication of polynomials
|
---|
| 670 | ;; Non-destructive version
|
---|
| 671 | (defun termlist-mul (ring p q)
|
---|
| 672 | (cond ((or (endp p) (endp q)) nil) ;p or q is 0 (represented by NIL)
|
---|
| 673 | ;; If p=p0+p1 and q=q0+q1 then pq=p0q0+p0q1+p1q
|
---|
| 674 | ((endp (cdr p))
|
---|
| 675 | (term-times-termlist ring (car p) q))
|
---|
| 676 | ((endp (cdr q))
|
---|
| 677 | (termlist-times-term ring p (car q)))
|
---|
| 678 | (t
|
---|
| 679 | (let ((head (term-mul ring (termlist-lt p) (termlist-lt q)))
|
---|
| 680 | (tail (termlist-add ring (term-times-termlist ring (car p) (cdr q))
|
---|
| 681 | (termlist-mul ring (cdr p) q))))
|
---|
| 682 | (cond ((null head) tail)
|
---|
| 683 | ((null tail) head)
|
---|
| 684 | (t (nconc head tail)))))))
|
---|
| 685 |
|
---|
| 686 | (defun termlist-unit (ring dimension)
|
---|
| 687 | (declare (fixnum dimension))
|
---|
| 688 | (list (make-term (make-monom dimension :initial-element 0)
|
---|
| 689 | (funcall (ring-unit ring)))))
|
---|
| 690 |
|
---|
| 691 | (defun termlist-expt (ring poly n &aux (dim (monom-dimension (termlist-lm poly))))
|
---|
| 692 | (declare (type fixnum n dim))
|
---|
| 693 | (cond
|
---|
| 694 | ((minusp n) (error "termlist-expt: Negative exponent."))
|
---|
| 695 | ((endp poly) (if (zerop n) (termlist-unit ring dim) nil))
|
---|
| 696 | (t
|
---|
| 697 | (do ((k 1 (ash k 1))
|
---|
| 698 | (q poly (termlist-mul ring q q)) ;keep squaring
|
---|
| 699 | (p (termlist-unit ring dim) (if (not (zerop (logand k n))) (termlist-mul ring p q) p)))
|
---|
| 700 | ((> k n) p)
|
---|
| 701 | (declare (fixnum k))))))
|
---|
| 702 |
|
---|
| 703 | |
---|
| 704 |
|
---|
| 705 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 706 | ;;
|
---|
| 707 | ;; Additional structure operations on a list of terms
|
---|
| 708 | ;;
|
---|
| 709 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 710 |
|
---|
| 711 | (defun termlist-contract (p &optional (k 1))
|
---|
| 712 | "Eliminate first K variables from a polynomial P."
|
---|
| 713 | (mapcar #'(lambda (term) (make-term (monom-contract k (term-monom term))
|
---|
| 714 | (term-coeff term)))
|
---|
| 715 | p))
|
---|
| 716 |
|
---|
| 717 | (defun termlist-extend (p &optional (m (make-monom 1 :initial-element 0)))
|
---|
| 718 | "Extend every monomial in a polynomial P by inserting at the
|
---|
| 719 | beginning of every monomial the list of powers M."
|
---|
| 720 | (mapcar #'(lambda (term) (make-term (monom-append m (term-monom term))
|
---|
| 721 | (term-coeff term)))
|
---|
| 722 | p))
|
---|
| 723 |
|
---|
| 724 | (defun termlist-add-variables (p n)
|
---|
| 725 | "Add N variables to a polynomial P by inserting zero powers
|
---|
| 726 | at the beginning of each monomial."
|
---|
| 727 | (declare (fixnum n))
|
---|
| 728 | (mapcar #'(lambda (term)
|
---|
| 729 | (make-term (monom-append (make-monom n :initial-element 0)
|
---|
| 730 | (term-monom term))
|
---|
| 731 | (term-coeff term)))
|
---|
| 732 | p))
|
---|
| 733 |
|
---|
| 734 | |
---|
| 735 |
|
---|
| 736 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 737 | ;;
|
---|
| 738 | ;; Arithmetic on polynomials
|
---|
| 739 | ;;
|
---|
| 740 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 741 |
|
---|
| 742 | (defstruct (poly
|
---|
| 743 | ;;BOA constructor, by default constructs zero polynomial
|
---|
| 744 | (:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist))))
|
---|
| 745 | (:constructor make-poly-zero (&aux (termlist nil) (sugar -1)))
|
---|
| 746 | ;;Constructor of polynomials representing a variable
|
---|
| 747 | (:constructor make-variable (ring nvars pos &optional (power 1)
|
---|
| 748 | &aux
|
---|
| 749 | (termlist (list
|
---|
| 750 | (make-term-variable ring nvars pos power)))
|
---|
| 751 | (sugar power)))
|
---|
| 752 | (:constructor poly-unit (ring dimension
|
---|
| 753 | &aux
|
---|
| 754 | (termlist (termlist-unit ring dimension))
|
---|
| 755 | (sugar 0))))
|
---|
| 756 | (termlist nil :type list)
|
---|
| 757 | (sugar -1 :type fixnum))
|
---|
| 758 |
|
---|
| 759 | ;; Leading term
|
---|
| 760 | (defmacro poly-lt (p) `(car (poly-termlist ,p)))
|
---|
| 761 |
|
---|
| 762 | ;; Second term
|
---|
| 763 | (defmacro poly-second-lt (p) `(cadar (poly-termlist ,p)))
|
---|
| 764 |
|
---|
| 765 | ;; Leading monomial
|
---|
| 766 | (defun poly-lm (p) (term-monom (poly-lt p)))
|
---|
| 767 |
|
---|
| 768 | ;; Second monomial
|
---|
| 769 | (defun poly-second-lm (p) (term-monom (poly-second-lt p)))
|
---|
| 770 |
|
---|
| 771 | ;; Leading coefficient
|
---|
| 772 | (defun poly-lc (p) (term-coeff (poly-lt p)))
|
---|
| 773 |
|
---|
| 774 | ;; Second coefficient
|
---|
| 775 | (defun poly-second-lc (p) (term-coeff (poly-second-lt p)))
|
---|
| 776 |
|
---|
| 777 | ;; Testing for a zero polynomial
|
---|
| 778 | (defun poly-zerop (p) (null (poly-termlist p)))
|
---|
| 779 |
|
---|
| 780 | ;; The number of terms
|
---|
| 781 | (defun poly-length (p) (length (poly-termlist p)))
|
---|
| 782 |
|
---|
| 783 | (defun scalar-times-poly (ring c p)
|
---|
| 784 | (make-poly-from-termlist (scalar-times-termlist ring c (poly-termlist p)) (poly-sugar p)))
|
---|
| 785 |
|
---|
| 786 | (defun monom-times-poly (m p)
|
---|
| 787 | (make-poly-from-termlist (monom-times-termlist m (poly-termlist p)) (+ (poly-sugar p) (monom-sugar m))))
|
---|
| 788 |
|
---|
| 789 | (defun term-times-poly (ring term p)
|
---|
| 790 | (make-poly-from-termlist (term-times-termlist ring term (poly-termlist p)) (+ (poly-sugar p) (term-sugar term))))
|
---|
| 791 |
|
---|
| 792 | (defun poly-add (ring p q)
|
---|
| 793 | (make-poly-from-termlist (termlist-add ring (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q))))
|
---|
| 794 |
|
---|
| 795 | (defun poly-sub (ring p q)
|
---|
| 796 | (make-poly-from-termlist (termlist-sub ring (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q))))
|
---|
| 797 |
|
---|
| 798 | (defun poly-uminus (ring p)
|
---|
| 799 | (make-poly-from-termlist (termlist-uminus ring (poly-termlist p)) (poly-sugar p)))
|
---|
| 800 |
|
---|
| 801 | (defun poly-mul (ring p q)
|
---|
| 802 | (make-poly-from-termlist (termlist-mul ring (poly-termlist p) (poly-termlist q)) (+ (poly-sugar p) (poly-sugar q))))
|
---|
| 803 |
|
---|
| 804 | (defun poly-expt (ring p n)
|
---|
| 805 | (make-poly-from-termlist (termlist-expt ring (poly-termlist p) n) (* n (poly-sugar p))))
|
---|
| 806 |
|
---|
| 807 | (defun poly-append (&rest plist)
|
---|
| 808 | (make-poly-from-termlist (apply #'append (mapcar #'poly-termlist plist))
|
---|
| 809 | (apply #'max (mapcar #'poly-sugar plist))))
|
---|
| 810 |
|
---|
| 811 | (defun poly-nreverse (p)
|
---|
| 812 | (setf (poly-termlist p) (nreverse (poly-termlist p)))
|
---|
| 813 | p)
|
---|
| 814 |
|
---|
| 815 | (defun poly-contract (p &optional (k 1))
|
---|
| 816 | (make-poly-from-termlist (termlist-contract (poly-termlist p) k)
|
---|
| 817 | (poly-sugar p)))
|
---|
| 818 |
|
---|
| 819 | (defun poly-extend (p &optional (m (make-monom 1 :initial-element 0)))
|
---|
| 820 | (make-poly-from-termlist
|
---|
| 821 | (termlist-extend (poly-termlist p) m)
|
---|
| 822 | (+ (poly-sugar p) (monom-sugar m))))
|
---|
| 823 |
|
---|
| 824 | (defun poly-add-variables (p k)
|
---|
| 825 | (setf (poly-termlist p) (termlist-add-variables (poly-termlist p) k))
|
---|
| 826 | p)
|
---|
| 827 |
|
---|
| 828 | (defun poly-list-add-variables (plist k)
|
---|
| 829 | (mapcar #'(lambda (p) (poly-add-variables p k)) plist))
|
---|
| 830 |
|
---|
| 831 | (defun poly-standard-extension (plist &aux (k (length plist)))
|
---|
| 832 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
|
---|
| 833 | (declare (list plist) (fixnum k))
|
---|
| 834 | (labels ((incf-power (g i)
|
---|
| 835 | (dolist (x (poly-termlist g))
|
---|
| 836 | (incf (monom-elt (term-monom x) i)))
|
---|
| 837 | (incf (poly-sugar g))))
|
---|
| 838 | (setf plist (poly-list-add-variables plist k))
|
---|
| 839 | (dotimes (i k plist)
|
---|
| 840 | (incf-power (nth i plist) i))))
|
---|
| 841 |
|
---|
| 842 | (defun saturation-extension (ring f plist &aux (k (length plist)) (d (monom-dimension (poly-lm (car plist)))))
|
---|
| 843 | "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
|
---|
| 844 | (setf f (poly-list-add-variables f k)
|
---|
| 845 | plist (mapcar #'(lambda (x)
|
---|
| 846 | (setf (poly-termlist x) (nconc (poly-termlist x)
|
---|
| 847 | (list (make-term (make-monom d :initial-element 0)
|
---|
| 848 | (funcall (ring-uminus ring) (funcall (ring-unit ring)))))))
|
---|
| 849 | x)
|
---|
| 850 | (poly-standard-extension plist)))
|
---|
| 851 | (append f plist))
|
---|
| 852 |
|
---|
| 853 |
|
---|
| 854 | (defun polysaturation-extension (ring f plist &aux (k (length plist))
|
---|
| 855 | (d (+ k (length (poly-lm (car plist))))))
|
---|
| 856 | "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]."
|
---|
| 857 | (setf f (poly-list-add-variables f k)
|
---|
| 858 | plist (apply #'poly-append (poly-standard-extension plist))
|
---|
| 859 | (cdr (last (poly-termlist plist))) (list (make-term (make-monom d :initial-element 0)
|
---|
| 860 | (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
|
---|
| 861 | (append f (list plist)))
|
---|
| 862 |
|
---|
| 863 | (defun saturation-extension-1 (ring f p) (polysaturation-extension ring f (list p)))
|
---|
| 864 |
|
---|
| 865 |
|
---|
| 866 | |
---|
| 867 |
|
---|
| 868 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 869 | ;;
|
---|
| 870 | ;; Evaluation of polynomial (prefix) expressions
|
---|
| 871 | ;;
|
---|
| 872 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 873 |
|
---|
| 874 | (defun coerce-coeff (ring expr vars)
|
---|
| 875 | "Coerce an element of the coefficient ring to a constant polynomial."
|
---|
| 876 | ;; Modular arithmetic handler by rat
|
---|
| 877 | (make-poly-from-termlist (list (make-term (make-monom (length vars) :initial-element 0)
|
---|
| 878 | (funcall (ring-parse ring) expr)))
|
---|
| 879 | 0))
|
---|
| 880 |
|
---|
| 881 | (defun poly-eval (ring expr vars &optional (list-marker '[))
|
---|
| 882 | (labels ((p-eval (arg) (poly-eval ring arg vars))
|
---|
| 883 | (p-eval-list (args) (mapcar #'p-eval args))
|
---|
| 884 | (p-add (x y) (poly-add ring x y)))
|
---|
| 885 | (cond
|
---|
| 886 | ((eql expr 0) (make-poly-zero))
|
---|
| 887 | ((member expr vars :test #'equalp)
|
---|
| 888 | (let ((pos (position expr vars :test #'equalp)))
|
---|
| 889 | (make-variable ring (length vars) pos)))
|
---|
| 890 | ((atom expr)
|
---|
| 891 | (coerce-coeff ring expr vars))
|
---|
| 892 | ((eq (car expr) list-marker)
|
---|
| 893 | (cons list-marker (p-eval-list (cdr expr))))
|
---|
| 894 | (t
|
---|
| 895 | (case (car expr)
|
---|
| 896 | (+ (reduce #'p-add (p-eval-list (cdr expr))))
|
---|
| 897 | (- (case (length expr)
|
---|
| 898 | (1 (make-poly-zero))
|
---|
| 899 | (2 (poly-uminus ring (p-eval (cadr expr))))
|
---|
| 900 | (3 (poly-sub ring (p-eval (cadr expr)) (p-eval (caddr expr))))
|
---|
| 901 | (otherwise (poly-sub ring (p-eval (cadr expr))
|
---|
| 902 | (reduce #'p-add (p-eval-list (cddr expr)))))))
|
---|
| 903 | (*
|
---|
| 904 | (if (endp (cddr expr)) ;unary
|
---|
| 905 | (p-eval (cdr expr))
|
---|
| 906 | (reduce #'(lambda (p q) (poly-mul ring p q)) (p-eval-list (cdr expr)))))
|
---|
| 907 | (expt
|
---|
| 908 | (cond
|
---|
| 909 | ((member (cadr expr) vars :test #'equalp)
|
---|
| 910 | ;;Special handling of (expt var pow)
|
---|
| 911 | (let ((pos (position (cadr expr) vars :test #'equalp)))
|
---|
| 912 | (make-variable ring (length vars) pos (caddr expr))))
|
---|
| 913 | ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
|
---|
| 914 | ;; Negative power means division in coefficient ring
|
---|
| 915 | ;; Non-integer power means non-polynomial coefficient
|
---|
| 916 | (coerce-coeff ring expr vars))
|
---|
| 917 | (t (poly-expt ring (p-eval (cadr expr)) (caddr expr)))))
|
---|
| 918 | (otherwise
|
---|
| 919 | (coerce-coeff ring expr vars)))))))
|
---|
| 920 |
|
---|
| 921 | |
---|
| 922 |
|
---|
| 923 |
|
---|
| 924 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 925 | ;;
|
---|
| 926 | ;; Debugging/tracing
|
---|
| 927 | ;;
|
---|
| 928 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 929 |
|
---|
| 930 |
|
---|
| 931 |
|
---|
| 932 | (defmacro debug-cgb (&rest args)
|
---|
| 933 | `(when $poly_grobner_debug (format *terminal-io* ,@args)))
|
---|
| 934 |
|
---|
| 935 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 936 | ;;
|
---|
| 937 | ;; An implementation of Grobner basis
|
---|
| 938 | ;;
|
---|
| 939 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 940 |
|
---|
| 941 | (defun spoly (ring f g)
|
---|
| 942 | "It yields the S-polynomial of polynomials F and G."
|
---|
| 943 | (declare (type poly f g))
|
---|
| 944 | (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
|
---|
| 945 | (mf (monom-div lcm (poly-lm f)))
|
---|
| 946 | (mg (monom-div lcm (poly-lm g))))
|
---|
| 947 | (declare (type monom mf mg))
|
---|
| 948 | (multiple-value-bind (c cf cg)
|
---|
| 949 | (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
|
---|
| 950 | (declare (ignore c))
|
---|
| 951 | (poly-sub
|
---|
| 952 | ring
|
---|
| 953 | (scalar-times-poly ring cg (monom-times-poly mf f))
|
---|
| 954 | (scalar-times-poly ring cf (monom-times-poly mg g))))))
|
---|
| 955 |
|
---|
| 956 |
|
---|
| 957 | (defun poly-primitive-part (ring p)
|
---|
| 958 | "Divide polynomial P with integer coefficients by gcd of its
|
---|
| 959 | coefficients and return the result."
|
---|
| 960 | (declare (type poly p))
|
---|
| 961 | (if (poly-zerop p)
|
---|
| 962 | (values p 1)
|
---|
| 963 | (let ((c (poly-content ring p)))
|
---|
| 964 | (values (make-poly-from-termlist (mapcar
|
---|
| 965 | #'(lambda (x)
|
---|
| 966 | (make-term (term-monom x)
|
---|
| 967 | (funcall (ring-div ring) (term-coeff x) c)))
|
---|
| 968 | (poly-termlist p))
|
---|
| 969 | (poly-sugar p))
|
---|
| 970 | c))))
|
---|
| 971 |
|
---|
| 972 | (defun poly-content (ring p)
|
---|
| 973 | "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
|
---|
| 974 | to compute the greatest common divisor."
|
---|
| 975 | (declare (type poly p))
|
---|
| 976 | (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
|
---|
| 977 |
|
---|
| 978 | |
---|
| 979 |
|
---|
| 980 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 981 | ;;
|
---|
| 982 | ;; An implementation of the division algorithm
|
---|
| 983 | ;;
|
---|
| 984 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 985 |
|
---|
| 986 | (defun grobner-op (ring c1 c2 m f g)
|
---|
| 987 | "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
|
---|
| 988 | Assume that the leading terms will cancel."
|
---|
| 989 | #+grobner-check(funcall (ring-zerop ring)
|
---|
| 990 | (funcall (ring-sub ring)
|
---|
| 991 | (funcall (ring-mul ring) c2 (poly-lc f))
|
---|
| 992 | (funcall (ring-mul ring) c1 (poly-lc g))))
|
---|
| 993 | #+grobner-check(monom-equal-p (poly-lm f) (monom-mul m (poly-lm g)))
|
---|
| 994 | (poly-sub ring
|
---|
| 995 | (scalar-times-poly ring c2 f)
|
---|
| 996 | (scalar-times-poly ring c1 (monom-times-poly m g))))
|
---|
| 997 |
|
---|
| 998 | (defun poly-pseudo-divide (ring f fl)
|
---|
| 999 | "Pseudo-divide a polynomial F by the list of polynomials FL. Return
|
---|
| 1000 | multiple values. The first value is a list of quotients A. The second
|
---|
| 1001 | value is the remainder R. The third argument is a scalar coefficient
|
---|
| 1002 | C, such that C*F can be divided by FL within the ring of coefficients,
|
---|
| 1003 | which is not necessarily a field. Finally, the fourth value is an
|
---|
| 1004 | integer count of the number of reductions performed. The resulting
|
---|
| 1005 | objects satisfy the equation: C*F= sum A[i]*FL[i] + R."
|
---|
| 1006 | (declare (type poly f) (list fl))
|
---|
| 1007 | (do ((r (make-poly-zero))
|
---|
| 1008 | (c (funcall (ring-unit ring)))
|
---|
| 1009 | (a (make-list (length fl) :initial-element (make-poly-zero)))
|
---|
| 1010 | (division-count 0)
|
---|
| 1011 | (p f))
|
---|
| 1012 | ((poly-zerop p)
|
---|
| 1013 | (debug-cgb "~&~3T~d reduction~:p" division-count)
|
---|
| 1014 | (when (poly-zerop r) (debug-cgb " ---> 0"))
|
---|
| 1015 | (values (mapcar #'poly-nreverse a) (poly-nreverse r) c division-count))
|
---|
| 1016 | (declare (fixnum division-count))
|
---|
| 1017 | (do ((fl fl (rest fl)) ;scan list of divisors
|
---|
| 1018 | (b a (rest b)))
|
---|
| 1019 | ((cond
|
---|
| 1020 | ((endp fl) ;no division occurred
|
---|
| 1021 | (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
|
---|
| 1022 | (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
|
---|
| 1023 | (pop (poly-termlist p)) ;remove lt(p) from p
|
---|
| 1024 | t)
|
---|
| 1025 | ((monom-divides-p (poly-lm (car fl)) (poly-lm p)) ;division occurred
|
---|
| 1026 | (incf division-count)
|
---|
| 1027 | (multiple-value-bind (gcd c1 c2)
|
---|
| 1028 | (funcall (ring-ezgcd ring) (poly-lc (car fl)) (poly-lc p))
|
---|
| 1029 | (declare (ignore gcd))
|
---|
| 1030 | (let ((m (monom-div (poly-lm p) (poly-lm (car fl)))))
|
---|
| 1031 | ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
|
---|
| 1032 | (mapl #'(lambda (x)
|
---|
| 1033 | (setf (car x) (scalar-times-poly ring c1 (car x))))
|
---|
| 1034 | a)
|
---|
| 1035 | (setf r (scalar-times-poly ring c1 r)
|
---|
| 1036 | c (funcall (ring-mul ring) c c1)
|
---|
| 1037 | p (grobner-op ring c2 c1 m p (car fl)))
|
---|
| 1038 | (push (make-term m c2) (poly-termlist (car b))))
|
---|
| 1039 | t)))))))
|
---|
| 1040 |
|
---|
| 1041 | (defun poly-exact-divide (ring f g)
|
---|
| 1042 | "Divide a polynomial F by another polynomial G. Assume that exact division
|
---|
| 1043 | with no remainder is possible. Returns the quotient."
|
---|
| 1044 | (declare (type poly f g))
|
---|
| 1045 | (multiple-value-bind (quot rem coeff division-count)
|
---|
| 1046 | (poly-pseudo-divide ring f (list g))
|
---|
| 1047 | (declare (ignore division-count coeff)
|
---|
| 1048 | (list quot)
|
---|
| 1049 | (type poly rem)
|
---|
| 1050 | (type fixnum division-count))
|
---|
| 1051 | (unless (poly-zerop rem) (error "Exact division failed."))
|
---|
| 1052 | (car quot)))
|
---|
| 1053 |
|
---|
| 1054 | |
---|
| 1055 |
|
---|
| 1056 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1057 | ;;
|
---|
| 1058 | ;; An implementation of the normal form
|
---|
| 1059 | ;;
|
---|
| 1060 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1061 |
|
---|
| 1062 | (defun normal-form-step (ring fl p r c division-count
|
---|
| 1063 | &aux (g (find (poly-lm p) fl
|
---|
| 1064 | :test #'monom-divisible-by-p
|
---|
| 1065 | :key #'poly-lm)))
|
---|
| 1066 | (cond
|
---|
| 1067 | (g ;division possible
|
---|
| 1068 | (incf division-count)
|
---|
| 1069 | (multiple-value-bind (gcd cg cp)
|
---|
| 1070 | (funcall (ring-ezgcd ring) (poly-lc g) (poly-lc p))
|
---|
| 1071 | (declare (ignore gcd))
|
---|
| 1072 | (let ((m (monom-div (poly-lm p) (poly-lm g))))
|
---|
| 1073 | ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
|
---|
| 1074 | (setf r (scalar-times-poly ring cg r)
|
---|
| 1075 | c (funcall (ring-mul ring) c cg)
|
---|
| 1076 | ;; p := cg*p-cp*m*g
|
---|
| 1077 | p (grobner-op ring cp cg m p g))))
|
---|
| 1078 | (debug-cgb "/"))
|
---|
| 1079 | (t ;no division possible
|
---|
| 1080 | (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
|
---|
| 1081 | (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
|
---|
| 1082 | (pop (poly-termlist p)) ;remove lt(p) from p
|
---|
| 1083 | (debug-cgb "+")))
|
---|
| 1084 | (values p r c division-count))
|
---|
| 1085 |
|
---|
| 1086 | ;; Merge it sometime with poly-pseudo-divide
|
---|
| 1087 | (defun normal-form (ring f fl &optional (top-reduction-only $poly_top_reduction_only))
|
---|
| 1088 | ;; Loop invariant: c*f0=sum ai*fi+r+f, where f0 is the initial value of f
|
---|
| 1089 | #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
|
---|
| 1090 | (do ((r (make-poly-zero))
|
---|
| 1091 | (c (funcall (ring-unit ring)))
|
---|
| 1092 | (division-count 0))
|
---|
| 1093 | ((or (poly-zerop f)
|
---|
| 1094 | ;;(endp fl)
|
---|
| 1095 | (and top-reduction-only (not (poly-zerop r))))
|
---|
| 1096 | (progn
|
---|
| 1097 | (debug-cgb "~&~3T~d reduction~:p" division-count)
|
---|
| 1098 | (when (poly-zerop r)
|
---|
| 1099 | (debug-cgb " ---> 0")))
|
---|
| 1100 | (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
|
---|
| 1101 | (values f c division-count))
|
---|
| 1102 | (declare (fixnum division-count)
|
---|
| 1103 | (type poly r))
|
---|
| 1104 | (multiple-value-setq (f r c division-count)
|
---|
| 1105 | (normal-form-step ring fl f r c division-count))))
|
---|
| 1106 |
|
---|
| 1107 | |
---|
| 1108 |
|
---|
| 1109 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1110 | ;;
|
---|
| 1111 | ;; These are provided mostly for debugging purposes To enable
|
---|
| 1112 | ;; verification of grobner bases with BUCHBERGER-CRITERION, do
|
---|
| 1113 | ;; (pushnew :grobner-check *features*) and compile/load this file.
|
---|
| 1114 | ;; With this feature, the calculations will slow down CONSIDERABLY.
|
---|
| 1115 | ;;
|
---|
| 1116 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1117 |
|
---|
| 1118 | (defun buchberger-criterion (ring g)
|
---|
| 1119 | "Returns T if G is a Grobner basis, by using the Buchberger
|
---|
| 1120 | criterion: for every two polynomials h1 and h2 in G the S-polynomial
|
---|
| 1121 | S(h1,h2) reduces to 0 modulo G."
|
---|
| 1122 | (every
|
---|
| 1123 | #'poly-zerop
|
---|
| 1124 | (makelist (normal-form ring (spoly ring (elt g i) (elt g j)) g nil)
|
---|
| 1125 | (i 0 (- (length g) 2))
|
---|
| 1126 | (j (1+ i) (1- (length g))))))
|
---|
| 1127 |
|
---|
| 1128 | (defun grobner-test (ring g f)
|
---|
| 1129 | "Test whether G is a Grobner basis and F is contained in G. Return T
|
---|
| 1130 | upon success and NIL otherwise."
|
---|
| 1131 | (debug-cgb "~&GROBNER CHECK: ")
|
---|
| 1132 | (let (($poly_grobner_debug nil)
|
---|
| 1133 | (stat1 (buchberger-criterion ring g))
|
---|
| 1134 | (stat2
|
---|
| 1135 | (every #'poly-zerop
|
---|
| 1136 | (makelist (normal-form ring (copy-tree (elt f i)) g nil)
|
---|
| 1137 | (i 0 (1- (length f)))))))
|
---|
| 1138 | (unless stat1 (error "~&Buchberger criterion failed."))
|
---|
| 1139 | (unless stat2
|
---|
| 1140 | (error "~&Original polys not in ideal spanned by Grobner.")))
|
---|
| 1141 | (debug-cgb "~&GROBNER CHECK END")
|
---|
| 1142 | t)
|
---|
| 1143 |
|
---|
| 1144 | |
---|
| 1145 |
|
---|
| 1146 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1147 | ;;
|
---|
| 1148 | ;; Pair queue implementation
|
---|
| 1149 | ;;
|
---|
| 1150 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1151 |
|
---|
| 1152 | (defun sugar-pair-key (p q &aux (lcm (monom-lcm (poly-lm p) (poly-lm q)))
|
---|
| 1153 | (d (monom-sugar lcm)))
|
---|
| 1154 | "Returns list (S LCM-TOTAL-DEGREE) where S is the sugar of the S-polynomial of
|
---|
| 1155 | polynomials P and Q, and LCM-TOTAL-DEGREE is the degree of is LCM(LM(P),LM(Q))."
|
---|
| 1156 | (declare (type poly p q) (type monom lcm) (type fixnum d))
|
---|
| 1157 | (cons (max
|
---|
| 1158 | (+ (- d (monom-sugar (poly-lm p))) (poly-sugar p))
|
---|
| 1159 | (+ (- d (monom-sugar (poly-lm q))) (poly-sugar q)))
|
---|
| 1160 | lcm))
|
---|
| 1161 |
|
---|
| 1162 | (defstruct (pair
|
---|
| 1163 | (:constructor make-pair (first second
|
---|
| 1164 | &aux
|
---|
| 1165 | (sugar (car (sugar-pair-key first second)))
|
---|
| 1166 | (division-data nil))))
|
---|
| 1167 | (first nil :type poly)
|
---|
| 1168 | (second nil :type poly)
|
---|
| 1169 | (sugar 0 :type fixnum)
|
---|
| 1170 | (division-data nil :type list))
|
---|
| 1171 |
|
---|
| 1172 | ;;(defun pair-sugar (pair &aux (p (pair-first pair)) (q (pair-second pair)))
|
---|
| 1173 | ;; (car (sugar-pair-key p q)))
|
---|
| 1174 |
|
---|
| 1175 | (defun sugar-order (x y)
|
---|
| 1176 | "Pair order based on sugar, ties broken by normal strategy."
|
---|
| 1177 | (declare (type cons x y))
|
---|
| 1178 | (or (< (car x) (car y))
|
---|
| 1179 | (and (= (car x) (car y))
|
---|
| 1180 | (< (monom-total-degree (cdr x))
|
---|
| 1181 | (monom-total-degree (cdr y))))))
|
---|
| 1182 |
|
---|
| 1183 | (defvar *pair-key-function* #'sugar-pair-key
|
---|
| 1184 | "Function that, given two polynomials as argument, computed the key
|
---|
| 1185 | in the pair queue.")
|
---|
| 1186 |
|
---|
| 1187 | (defvar *pair-order* #'sugar-order
|
---|
| 1188 | "Function that orders the keys of pairs.")
|
---|
| 1189 |
|
---|
| 1190 | (defun make-pair-queue ()
|
---|
| 1191 | "Constructs a priority queue for critical pairs."
|
---|
| 1192 | (make-priority-queue
|
---|
| 1193 | :element-type 'pair
|
---|
| 1194 | :element-key #'(lambda (pair) (funcall *pair-key-function* (pair-first pair) (pair-second pair)))
|
---|
| 1195 | :test *pair-order*))
|
---|
| 1196 |
|
---|
| 1197 | (defun pair-queue-initialize (pq f start
|
---|
| 1198 | &aux
|
---|
| 1199 | (s (1- (length f)))
|
---|
| 1200 | (b (nconc (makelist (make-pair (elt f i) (elt f j))
|
---|
| 1201 | (i 0 (1- start)) (j start s))
|
---|
| 1202 | (makelist (make-pair (elt f i) (elt f j))
|
---|
| 1203 | (i start (1- s)) (j (1+ i) s)))))
|
---|
| 1204 | "Initializes the priority for critical pairs. F is the initial list of polynomials.
|
---|
| 1205 | START is the first position beyond the elements which form a partial
|
---|
| 1206 | grobner basis, i.e. satisfy the Buchberger criterion."
|
---|
| 1207 | (declare (type priority-queue pq) (type fixnum start))
|
---|
| 1208 | (dolist (pair b pq)
|
---|
| 1209 | (priority-queue-insert pq pair)))
|
---|
| 1210 |
|
---|
| 1211 | (defun pair-queue-insert (b pair)
|
---|
| 1212 | (priority-queue-insert b pair))
|
---|
| 1213 |
|
---|
| 1214 | (defun pair-queue-remove (b)
|
---|
| 1215 | (priority-queue-remove b))
|
---|
| 1216 |
|
---|
| 1217 | (defun pair-queue-size (b)
|
---|
| 1218 | (priority-queue-size b))
|
---|
| 1219 |
|
---|
| 1220 | (defun pair-queue-empty-p (b)
|
---|
| 1221 | (priority-queue-empty-p b))
|
---|
| 1222 |
|
---|
| 1223 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1224 | ;;
|
---|
| 1225 | ;; Buchberger Algorithm Implementation
|
---|
| 1226 | ;;
|
---|
| 1227 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1228 |
|
---|
| 1229 | (defun buchberger (ring f start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
| 1230 | "An implementation of the Buchberger algorithm. Return Grobner basis
|
---|
| 1231 | of the ideal generated by the polynomial list F. Polynomials 0 to
|
---|
| 1232 | START-1 are assumed to be a Grobner basis already, so that certain
|
---|
| 1233 | critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top
|
---|
| 1234 | reduction will be preformed. This function assumes that all polynomials
|
---|
| 1235 | in F are non-zero."
|
---|
| 1236 | (declare (type fixnum start))
|
---|
| 1237 | (when (endp f) (return-from buchberger f)) ;cut startup costs
|
---|
| 1238 | (debug-cgb "~&GROBNER BASIS - BUCHBERGER ALGORITHM")
|
---|
| 1239 | (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
|
---|
| 1240 | #+grobner-check (when (plusp start)
|
---|
| 1241 | (grobner-test ring (subseq f 0 start) (subseq f 0 start)))
|
---|
| 1242 | ;;Initialize critical pairs
|
---|
| 1243 | (let ((b (pair-queue-initialize (make-pair-queue)
|
---|
| 1244 | f start))
|
---|
| 1245 | (b-done (make-hash-table :test #'equal)))
|
---|
| 1246 | (declare (type priority-queue b) (type hash-table b-done))
|
---|
| 1247 | (dotimes (i (1- start))
|
---|
| 1248 | (do ((j (1+ i) (1+ j))) ((>= j start))
|
---|
| 1249 | (setf (gethash (list (elt f i) (elt f j)) b-done) t)))
|
---|
| 1250 | (do ()
|
---|
| 1251 | ((pair-queue-empty-p b)
|
---|
| 1252 | #+grobner-check(grobner-test ring f f)
|
---|
| 1253 | (debug-cgb "~&GROBNER END")
|
---|
| 1254 | f)
|
---|
| 1255 | (let ((pair (pair-queue-remove b)))
|
---|
| 1256 | (declare (type pair pair))
|
---|
| 1257 | (cond
|
---|
| 1258 | ((criterion-1 pair) nil)
|
---|
| 1259 | ((criterion-2 pair b-done f) nil)
|
---|
| 1260 | (t
|
---|
| 1261 | (let ((sp (normal-form ring (spoly ring (pair-first pair)
|
---|
| 1262 | (pair-second pair))
|
---|
| 1263 | f top-reduction-only)))
|
---|
| 1264 | (declare (type poly sp))
|
---|
| 1265 | (cond
|
---|
| 1266 | ((poly-zerop sp)
|
---|
| 1267 | nil)
|
---|
| 1268 | (t
|
---|
| 1269 | (setf sp (poly-primitive-part ring sp)
|
---|
| 1270 | f (nconc f (list sp)))
|
---|
| 1271 | ;; Add new critical pairs
|
---|
| 1272 | (dolist (h f)
|
---|
| 1273 | (pair-queue-insert b (make-pair h sp)))
|
---|
| 1274 | (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"
|
---|
| 1275 | (pair-sugar pair) (length f) (pair-queue-size b)
|
---|
| 1276 | (hash-table-count b-done)))))))
|
---|
| 1277 | (setf (gethash (list (pair-first pair) (pair-second pair)) b-done)
|
---|
| 1278 | t)))))
|
---|
| 1279 |
|
---|
| 1280 | (defun parallel-buchberger (ring f start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
| 1281 | "An implementation of the Buchberger algorithm. Return Grobner basis
|
---|
| 1282 | of the ideal generated by the polynomial list F. Polynomials 0 to
|
---|
| 1283 | START-1 are assumed to be a Grobner basis already, so that certain
|
---|
| 1284 | critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top
|
---|
| 1285 | reduction will be preformed."
|
---|
| 1286 | (declare (ignore top-reduction-only)
|
---|
| 1287 | (type fixnum start))
|
---|
| 1288 | (when (endp f) (return-from parallel-buchberger f)) ;cut startup costs
|
---|
| 1289 | (debug-cgb "~&GROBNER BASIS - PARALLEL-BUCHBERGER ALGORITHM")
|
---|
| 1290 | (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
|
---|
| 1291 | #+grobner-check (when (plusp start)
|
---|
| 1292 | (grobner-test ring (subseq f 0 start) (subseq f 0 start)))
|
---|
| 1293 | ;;Initialize critical pairs
|
---|
| 1294 | (let ((b (pair-queue-initialize (make-pair-queue) f start))
|
---|
| 1295 | (b-done (make-hash-table :test #'equal)))
|
---|
| 1296 | (declare (type priority-queue b)
|
---|
| 1297 | (type hash-table b-done))
|
---|
| 1298 | (dotimes (i (1- start))
|
---|
| 1299 | (do ((j (1+ i) (1+ j))) ((>= j start))
|
---|
| 1300 | (declare (type fixnum j))
|
---|
| 1301 | (setf (gethash (list (elt f i) (elt f j)) b-done) t)))
|
---|
| 1302 | (do ()
|
---|
| 1303 | ((pair-queue-empty-p b)
|
---|
| 1304 | #+grobner-check(grobner-test ring f f)
|
---|
| 1305 | (debug-cgb "~&GROBNER END")
|
---|
| 1306 | f)
|
---|
| 1307 | (let ((pair (pair-queue-remove b)))
|
---|
| 1308 | (when (null (pair-division-data pair))
|
---|
| 1309 | (setf (pair-division-data pair) (list (spoly ring
|
---|
| 1310 | (pair-first pair)
|
---|
| 1311 | (pair-second pair))
|
---|
| 1312 | (make-poly-zero)
|
---|
| 1313 | (funcall (ring-unit ring))
|
---|
| 1314 | 0)))
|
---|
| 1315 | (cond
|
---|
| 1316 | ((criterion-1 pair) nil)
|
---|
| 1317 | ((criterion-2 pair b-done f) nil)
|
---|
| 1318 | (t
|
---|
| 1319 | (let* ((dd (pair-division-data pair))
|
---|
| 1320 | (p (first dd))
|
---|
| 1321 | (sp (second dd))
|
---|
| 1322 | (c (third dd))
|
---|
| 1323 | (division-count (fourth dd)))
|
---|
| 1324 | (cond
|
---|
| 1325 | ((poly-zerop p) ;normal form completed
|
---|
| 1326 | (debug-cgb "~&~3T~d reduction~:p" division-count)
|
---|
| 1327 | (cond
|
---|
| 1328 | ((poly-zerop sp)
|
---|
| 1329 | (debug-cgb " ---> 0")
|
---|
| 1330 | nil)
|
---|
| 1331 | (t
|
---|
| 1332 | (setf sp (poly-nreverse sp)
|
---|
| 1333 | sp (poly-primitive-part ring sp)
|
---|
| 1334 | f (nconc f (list sp)))
|
---|
| 1335 | ;; Add new critical pairs
|
---|
| 1336 | (dolist (h f)
|
---|
| 1337 | (pair-queue-insert b (make-pair h sp)))
|
---|
| 1338 | (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"
|
---|
| 1339 | (pair-sugar pair) (length f) (pair-queue-size b)
|
---|
| 1340 | (hash-table-count b-done))))
|
---|
| 1341 | (setf (gethash (list (pair-first pair) (pair-second pair))
|
---|
| 1342 | b-done) t))
|
---|
| 1343 | (t ;normal form not complete
|
---|
| 1344 | (do ()
|
---|
| 1345 | ((cond
|
---|
| 1346 | ((> (poly-sugar sp) (pair-sugar pair))
|
---|
| 1347 | (debug-cgb "(~a)?" (poly-sugar sp))
|
---|
| 1348 | t)
|
---|
| 1349 | ((poly-zerop p)
|
---|
| 1350 | (debug-cgb ".")
|
---|
| 1351 | t)
|
---|
| 1352 | (t nil))
|
---|
| 1353 | (setf (first dd) p
|
---|
| 1354 | (second dd) sp
|
---|
| 1355 | (third dd) c
|
---|
| 1356 | (fourth dd) division-count
|
---|
| 1357 | (pair-sugar pair) (poly-sugar sp))
|
---|
| 1358 | (pair-queue-insert b pair))
|
---|
| 1359 | (multiple-value-setq (p sp c division-count)
|
---|
| 1360 | (normal-form-step ring f p sp c division-count))))))))))))
|
---|
| 1361 |
|
---|
| 1362 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1363 | ;;
|
---|
| 1364 | ;; Grobner Criteria
|
---|
| 1365 | ;;
|
---|
| 1366 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1367 |
|
---|
| 1368 | (defun criterion-1 (pair)
|
---|
| 1369 | "Returns T if the leading monomials of the two polynomials
|
---|
| 1370 | in G pointed to by the integers in PAIR have disjoint (relatively prime)
|
---|
| 1371 | monomials. This test is known as the first Buchberger criterion."
|
---|
| 1372 | (declare (type pair pair))
|
---|
| 1373 | (let ((f (pair-first pair))
|
---|
| 1374 | (g (pair-second pair)))
|
---|
| 1375 | (when (monom-rel-prime-p (poly-lm f) (poly-lm g))
|
---|
| 1376 | (debug-cgb ":1")
|
---|
| 1377 | (return-from criterion-1 t))))
|
---|
| 1378 |
|
---|
| 1379 | (defun criterion-2 (pair b-done partial-basis
|
---|
| 1380 | &aux (f (pair-first pair)) (g (pair-second pair))
|
---|
| 1381 | (place :before))
|
---|
| 1382 | "Returns T if the leading monomial of some element P of
|
---|
| 1383 | PARTIAL-BASIS divides the LCM of the leading monomials of the two
|
---|
| 1384 | polynomials in the polynomial list PARTIAL-BASIS, and P paired with
|
---|
| 1385 | each of the polynomials pointed to by the the PAIR has already been
|
---|
| 1386 | treated, as indicated by the absence in the hash table B-done."
|
---|
| 1387 | (declare (type pair pair) (type hash-table b-done)
|
---|
| 1388 | (type poly f g))
|
---|
| 1389 | ;; In the code below we assume that pairs are ordered as follows:
|
---|
| 1390 | ;; if PAIR is (I J) then I appears before J in the PARTIAL-BASIS.
|
---|
| 1391 | ;; We traverse the list PARTIAL-BASIS and keep track of where we
|
---|
| 1392 | ;; are, so that we can produce the pairs in the correct order
|
---|
| 1393 | ;; when we check whether they have been processed, i.e they
|
---|
| 1394 | ;; appear in the hash table B-done
|
---|
| 1395 | (dolist (h partial-basis nil)
|
---|
| 1396 | (cond
|
---|
| 1397 | ((eq h f)
|
---|
| 1398 | #+grobner-check(assert (eq place :before))
|
---|
| 1399 | (setf place :in-the-middle))
|
---|
| 1400 | ((eq h g)
|
---|
| 1401 | #+grobner-check(assert (eq place :in-the-middle))
|
---|
| 1402 | (setf place :after))
|
---|
| 1403 | ((and (monom-divides-monom-lcm-p (poly-lm h) (poly-lm f) (poly-lm g))
|
---|
| 1404 | (gethash (case place
|
---|
| 1405 | (:before (list h f))
|
---|
| 1406 | ((:in-the-middle :after) (list f h)))
|
---|
| 1407 | b-done)
|
---|
| 1408 | (gethash (case place
|
---|
| 1409 | ((:before :in-the-middle) (list h g))
|
---|
| 1410 | (:after (list g h)))
|
---|
| 1411 | b-done))
|
---|
| 1412 | (debug-cgb ":2")
|
---|
| 1413 | (return-from criterion-2 t)))))
|
---|
| 1414 |
|
---|
| 1415 | |
---|
| 1416 |
|
---|
| 1417 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1418 | ;;
|
---|
| 1419 | ;; An implementation of the algorithm of Gebauer and Moeller, as
|
---|
| 1420 | ;; described in the book of Becker-Weispfenning, p. 232
|
---|
| 1421 | ;;
|
---|
| 1422 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1423 |
|
---|
| 1424 | (defun gebauer-moeller (ring f start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
| 1425 | "Compute Grobner basis by using the algorithm of Gebauer and
|
---|
| 1426 | Moeller. This algorithm is described as BUCHBERGERNEW2 in the book by
|
---|
| 1427 | Becker-Weispfenning entitled ``Grobner Bases''. This function assumes
|
---|
| 1428 | that all polynomials in F are non-zero."
|
---|
| 1429 | (declare (ignore top-reduction-only)
|
---|
| 1430 | (type fixnum start))
|
---|
| 1431 | (cond
|
---|
| 1432 | ((endp f) (return-from gebauer-moeller nil))
|
---|
| 1433 | ((endp (cdr f))
|
---|
| 1434 | (return-from gebauer-moeller (list (poly-primitive-part ring (car f))))))
|
---|
| 1435 | (debug-cgb "~&GROBNER BASIS - GEBAUER MOELLER ALGORITHM")
|
---|
| 1436 | (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
|
---|
| 1437 | #+grobner-check (when (plusp start)
|
---|
| 1438 | (grobner-test ring (subseq f 0 start) (subseq f 0 start)))
|
---|
| 1439 | (let ((b (make-pair-queue))
|
---|
| 1440 | (g (subseq f 0 start))
|
---|
| 1441 | (f1 (subseq f start)))
|
---|
| 1442 | (do () ((endp f1))
|
---|
| 1443 | (multiple-value-setq (g b)
|
---|
| 1444 | (gebauer-moeller-update g b (poly-primitive-part ring (pop f1)))))
|
---|
| 1445 | (do () ((pair-queue-empty-p b))
|
---|
| 1446 | (let* ((pair (pair-queue-remove b))
|
---|
| 1447 | (g1 (pair-first pair))
|
---|
| 1448 | (g2 (pair-second pair))
|
---|
| 1449 | (h (normal-form ring (spoly ring g1 g2)
|
---|
| 1450 | g
|
---|
| 1451 | nil #| Always fully reduce! |#
|
---|
| 1452 | )))
|
---|
| 1453 | (unless (poly-zerop h)
|
---|
| 1454 | (setf h (poly-primitive-part ring h))
|
---|
| 1455 | (multiple-value-setq (g b)
|
---|
| 1456 | (gebauer-moeller-update g b h))
|
---|
| 1457 | (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d~%"
|
---|
| 1458 | (pair-sugar pair) (length g) (pair-queue-size b))
|
---|
| 1459 | )))
|
---|
| 1460 | #+grobner-check(grobner-test ring g f)
|
---|
| 1461 | (debug-cgb "~&GROBNER END")
|
---|
| 1462 | g))
|
---|
| 1463 |
|
---|
| 1464 | (defun gebauer-moeller-update (g b h
|
---|
| 1465 | &aux
|
---|
| 1466 | c d e
|
---|
| 1467 | (b-new (make-pair-queue))
|
---|
| 1468 | g-new)
|
---|
| 1469 | "An implementation of the auxillary UPDATE algorithm used by the
|
---|
| 1470 | Gebauer-Moeller algorithm. G is a list of polynomials, B is a list of
|
---|
| 1471 | critical pairs and H is a new polynomial which possibly will be added
|
---|
| 1472 | to G. The naming conventions used are very close to the one used in
|
---|
| 1473 | the book of Becker-Weispfenning."
|
---|
| 1474 | (declare
|
---|
| 1475 | #+allegro (dynamic-extent b)
|
---|
| 1476 | (type poly h)
|
---|
| 1477 | (type priority-queue b))
|
---|
| 1478 | (setf c g d nil)
|
---|
| 1479 | (do () ((endp c))
|
---|
| 1480 | (let ((g1 (pop c)))
|
---|
| 1481 | (declare (type poly g1))
|
---|
| 1482 | (when (or (monom-rel-prime-p (poly-lm h) (poly-lm g1))
|
---|
| 1483 | (and
|
---|
| 1484 | (notany #'(lambda (g2) (monom-lcm-divides-monom-lcm-p
|
---|
| 1485 | (poly-lm h) (poly-lm g2)
|
---|
| 1486 | (poly-lm h) (poly-lm g1)))
|
---|
| 1487 | c)
|
---|
| 1488 | (notany #'(lambda (g2) (monom-lcm-divides-monom-lcm-p
|
---|
| 1489 | (poly-lm h) (poly-lm g2)
|
---|
| 1490 | (poly-lm h) (poly-lm g1)))
|
---|
| 1491 | d)))
|
---|
| 1492 | (push g1 d))))
|
---|
| 1493 | (setf e nil)
|
---|
| 1494 | (do () ((endp d))
|
---|
| 1495 | (let ((g1 (pop d)))
|
---|
| 1496 | (declare (type poly g1))
|
---|
| 1497 | (unless (monom-rel-prime-p (poly-lm h) (poly-lm g1))
|
---|
| 1498 | (push g1 e))))
|
---|
| 1499 | (do () ((pair-queue-empty-p b))
|
---|
| 1500 | (let* ((pair (pair-queue-remove b))
|
---|
| 1501 | (g1 (pair-first pair))
|
---|
| 1502 | (g2 (pair-second pair)))
|
---|
| 1503 | (declare (type pair pair)
|
---|
| 1504 | (type poly g1 g2))
|
---|
| 1505 | (when (or (not (monom-divides-monom-lcm-p
|
---|
| 1506 | (poly-lm h)
|
---|
| 1507 | (poly-lm g1) (poly-lm g2)))
|
---|
| 1508 | (monom-lcm-equal-monom-lcm-p
|
---|
| 1509 | (poly-lm g1) (poly-lm h)
|
---|
| 1510 | (poly-lm g1) (poly-lm g2))
|
---|
| 1511 | (monom-lcm-equal-monom-lcm-p
|
---|
| 1512 | (poly-lm h) (poly-lm g2)
|
---|
| 1513 | (poly-lm g1) (poly-lm g2)))
|
---|
| 1514 | (pair-queue-insert b-new (make-pair g1 g2)))))
|
---|
| 1515 | (dolist (g3 e)
|
---|
| 1516 | (pair-queue-insert b-new (make-pair h g3)))
|
---|
| 1517 | (setf g-new nil)
|
---|
| 1518 | (do () ((endp g))
|
---|
| 1519 | (let ((g1 (pop g)))
|
---|
| 1520 | (declare (type poly g1))
|
---|
| 1521 | (unless (monom-divides-p (poly-lm h) (poly-lm g1))
|
---|
| 1522 | (push g1 g-new))))
|
---|
| 1523 | (push h g-new)
|
---|
| 1524 | (values g-new b-new))
|
---|
| 1525 |
|
---|
| 1526 | |
---|
| 1527 |
|
---|
| 1528 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1529 | ;;
|
---|
| 1530 | ;; Standard postprocessing of Grobner bases
|
---|
| 1531 | ;;
|
---|
| 1532 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1533 |
|
---|
| 1534 | (defun reduction (ring plist)
|
---|
| 1535 | "Reduce a list of polynomials PLIST, so that non of the terms in any of
|
---|
| 1536 | the polynomials is divisible by a leading monomial of another
|
---|
| 1537 | polynomial. Return the reduced list."
|
---|
| 1538 | (do ((q plist)
|
---|
| 1539 | (found t))
|
---|
| 1540 | ((not found)
|
---|
| 1541 | (mapcar #'(lambda (x) (poly-primitive-part ring x)) q))
|
---|
| 1542 | ;;Find p in Q such that p is reducible mod Q\{p}
|
---|
| 1543 | (setf found nil)
|
---|
| 1544 | (dolist (x q)
|
---|
| 1545 | (let ((q1 (remove x q)))
|
---|
| 1546 | (multiple-value-bind (h c div-count)
|
---|
| 1547 | (normal-form ring x q1 nil #| not a top reduction! |# )
|
---|
| 1548 | (declare (ignore c))
|
---|
| 1549 | (unless (zerop div-count)
|
---|
| 1550 | (setf found t q q1)
|
---|
| 1551 | (unless (poly-zerop h)
|
---|
| 1552 | (setf q (nconc q1 (list h))))
|
---|
| 1553 | (return)))))))
|
---|
| 1554 |
|
---|
| 1555 | (defun minimization (p)
|
---|
| 1556 | "Returns a sublist of the polynomial list P spanning the same
|
---|
| 1557 | monomial ideal as P but minimal, i.e. no leading monomial
|
---|
| 1558 | of a polynomial in the sublist divides the leading monomial
|
---|
| 1559 | of another polynomial."
|
---|
| 1560 | (do ((q p)
|
---|
| 1561 | (found t))
|
---|
| 1562 | ((not found) q)
|
---|
| 1563 | ;;Find p in Q such that lm(p) is in LM(Q\{p})
|
---|
| 1564 | (setf found nil
|
---|
| 1565 | q (dolist (x q q)
|
---|
| 1566 | (let ((q1 (remove x q)))
|
---|
| 1567 | (when (member-if #'(lambda (p) (monom-divides-p (poly-lm x) (poly-lm p))) q1)
|
---|
| 1568 | (setf found t)
|
---|
| 1569 | (return q1)))))))
|
---|
| 1570 |
|
---|
| 1571 | (defun poly-normalize (ring p &aux (c (poly-lc p)))
|
---|
| 1572 | "Divide a polynomial by its leading coefficient. It assumes
|
---|
| 1573 | that the division is possible, which may not always be the
|
---|
| 1574 | case in rings which are not fields. The exact division operator
|
---|
| 1575 | is assumed to be provided by the RING structure of the
|
---|
| 1576 | COEFFICIENT-RING package."
|
---|
| 1577 | (mapc #'(lambda (term)
|
---|
| 1578 | (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))
|
---|
| 1579 | (poly-termlist p))
|
---|
| 1580 | p)
|
---|
| 1581 |
|
---|
| 1582 | (defun poly-normalize-list (ring plist)
|
---|
| 1583 | "Divide every polynomial in a list PLIST by its leading coefficient. "
|
---|
| 1584 | (mapcar #'(lambda (x) (poly-normalize ring x)) plist))
|
---|
| 1585 |
|
---|
| 1586 | |
---|
| 1587 |
|
---|
| 1588 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1589 | ;;
|
---|
| 1590 | ;; Algorithm and Pair heuristic selection
|
---|
| 1591 | ;;
|
---|
| 1592 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1593 |
|
---|
| 1594 | (defun find-grobner-function (algorithm)
|
---|
| 1595 | "Return a function which calculates Grobner basis, based on its
|
---|
| 1596 | names. Names currently used are either Lisp symbols, Maxima symbols or
|
---|
| 1597 | keywords."
|
---|
| 1598 | (ecase algorithm
|
---|
| 1599 | ((buchberger :buchberger $buchberger) #'buchberger)
|
---|
| 1600 | ((parallel-buchberger :parallel-buchberger $parallel_buchberger) #'parallel-buchberger)
|
---|
| 1601 | ((gebauer-moeller :gebauer_moeller $gebauer_moeller) #'gebauer-moeller)))
|
---|
| 1602 |
|
---|
| 1603 | (defun grobner (ring f &optional (start 0) (top-reduction-only nil))
|
---|
| 1604 | ;;(setf F (sort F #'< :key #'sugar))
|
---|
| 1605 | (funcall
|
---|
| 1606 | (find-grobner-function $poly_grobner_algorithm)
|
---|
| 1607 | ring f start top-reduction-only))
|
---|
| 1608 |
|
---|
| 1609 | (defun reduced-grobner (ring f &optional (start 0) (top-reduction-only $poly_top_reduction_only))
|
---|
| 1610 | (reduction ring (grobner ring f start top-reduction-only)))
|
---|
| 1611 |
|
---|
| 1612 | |
---|
| 1613 |
|
---|
| 1614 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1615 | ;;
|
---|
| 1616 | ;; Operations in ideal theory
|
---|
| 1617 | ;;
|
---|
| 1618 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1619 |
|
---|
| 1620 | ;; Does the term depend on variable K?
|
---|
| 1621 | (defun term-depends-p (term k)
|
---|
| 1622 | "Return T if the term TERM depends on variable number K."
|
---|
| 1623 | (monom-depends-p (term-monom term) k))
|
---|
| 1624 |
|
---|
| 1625 | ;; Does the polynomial P depend on variable K?
|
---|
| 1626 | (defun poly-depends-p (p k)
|
---|
| 1627 | "Return T if the term polynomial P depends on variable number K."
|
---|
| 1628 | (some #'(lambda (term) (term-depends-p term k)) (poly-termlist p)))
|
---|
| 1629 |
|
---|
| 1630 | (defun ring-intersection (plist k)
|
---|
| 1631 | "This function assumes that polynomial list PLIST is a Grobner basis
|
---|
| 1632 | and it calculates the intersection with the ring R[x[k+1],...,x[n]], i.e.
|
---|
| 1633 | it discards polynomials which depend on variables x[0], x[1], ..., x[k]."
|
---|
| 1634 | (dotimes (i k plist)
|
---|
| 1635 | (setf plist
|
---|
| 1636 | (remove-if #'(lambda (p)
|
---|
| 1637 | (poly-depends-p p i))
|
---|
| 1638 | plist))))
|
---|
| 1639 |
|
---|
| 1640 | (defun elimination-ideal (ring flist k
|
---|
| 1641 | &optional (top-reduction-only $poly_top_reduction_only) (start 0)
|
---|
| 1642 | &aux (*monomial-order*
|
---|
| 1643 | (or *elimination-order*
|
---|
| 1644 | (elimination-order k))))
|
---|
| 1645 | (ring-intersection (reduced-grobner ring flist start top-reduction-only) k))
|
---|
| 1646 |
|
---|
| 1647 | (defun colon-ideal (ring f g &optional (top-reduction-only $poly_top_reduction_only))
|
---|
| 1648 | "Returns the reduced Grobner basis of the colon ideal Id(F):Id(G),
|
---|
| 1649 | where F and G are two lists of polynomials. The colon ideal I:J is
|
---|
| 1650 | defined as the set of polynomials H such that for all polynomials W in
|
---|
| 1651 | J the polynomial W*H belongs to I."
|
---|
| 1652 | (cond
|
---|
| 1653 | ((endp g)
|
---|
| 1654 | ;;Id(G) consists of 0 only so W*0=0 belongs to Id(F)
|
---|
| 1655 | (if (every #'poly-zerop f)
|
---|
| 1656 | (error "First ideal must be non-zero.")
|
---|
| 1657 | (list (make-poly
|
---|
| 1658 | (list (make-term
|
---|
| 1659 | (make-monom (monom-dimension (poly-lm (find-if-not #'poly-zerop f)))
|
---|
| 1660 | :initial-element 0)
|
---|
| 1661 | (funcall (ring-unit ring))))))))
|
---|
| 1662 | ((endp (cdr g))
|
---|
| 1663 | (colon-ideal-1 ring f (car g) top-reduction-only))
|
---|
| 1664 | (t
|
---|
| 1665 | (ideal-intersection ring
|
---|
| 1666 | (colon-ideal-1 ring f (car g) top-reduction-only)
|
---|
| 1667 | (colon-ideal ring f (rest g) top-reduction-only)
|
---|
| 1668 | top-reduction-only))))
|
---|
| 1669 |
|
---|
| 1670 | (defun colon-ideal-1 (ring f g &optional (top-reduction-only $poly_top_reduction_only))
|
---|
| 1671 | "Returns the reduced Grobner basis of the colon ideal Id(F):Id({G}), where
|
---|
| 1672 | F is a list of polynomials and G is a polynomial."
|
---|
| 1673 | (mapcar #'(lambda (x) (poly-exact-divide ring x g)) (ideal-intersection ring f (list g) top-reduction-only)))
|
---|
| 1674 |
|
---|
| 1675 |
|
---|
| 1676 | (defun ideal-intersection (ring f g &optional (top-reduction-only $poly_top_reduction_only)
|
---|
| 1677 | &aux (*monomial-order* (or *elimination-order*
|
---|
| 1678 | #'elimination-order-1)))
|
---|
| 1679 | (mapcar #'poly-contract
|
---|
| 1680 | (ring-intersection
|
---|
| 1681 | (reduced-grobner
|
---|
| 1682 | ring
|
---|
| 1683 | (append (mapcar #'(lambda (p) (poly-extend p (make-monom 1 :initial-element 1))) f)
|
---|
| 1684 | (mapcar #'(lambda (p)
|
---|
| 1685 | (poly-append (poly-extend (poly-uminus ring p)
|
---|
| 1686 | (make-monom 1 :initial-element 1))
|
---|
| 1687 | (poly-extend p)))
|
---|
| 1688 | g))
|
---|
| 1689 | 0
|
---|
| 1690 | top-reduction-only)
|
---|
| 1691 | 1)))
|
---|
| 1692 |
|
---|
| 1693 | (defun poly-lcm (ring f g)
|
---|
| 1694 | "Return LCM (least common multiple) of two polynomials F and G.
|
---|
| 1695 | The polynomials must be ordered according to monomial order PRED
|
---|
| 1696 | and their coefficients must be compatible with the RING structure
|
---|
| 1697 | defined in the COEFFICIENT-RING package."
|
---|
| 1698 | (cond
|
---|
| 1699 | ((poly-zerop f) f)
|
---|
| 1700 | ((poly-zerop g) g)
|
---|
| 1701 | ((and (endp (cdr (poly-termlist f))) (endp (cdr (poly-termlist g))))
|
---|
| 1702 | (let ((m (monom-lcm (poly-lm f) (poly-lm g))))
|
---|
| 1703 | (make-poly-from-termlist (list (make-term m (funcall (ring-lcm ring) (poly-lc f) (poly-lc g)))))))
|
---|
| 1704 | (t
|
---|
| 1705 | (multiple-value-bind (f f-cont)
|
---|
| 1706 | (poly-primitive-part ring f)
|
---|
| 1707 | (multiple-value-bind (g g-cont)
|
---|
| 1708 | (poly-primitive-part ring g)
|
---|
| 1709 | (scalar-times-poly
|
---|
| 1710 | ring
|
---|
| 1711 | (funcall (ring-lcm ring) f-cont g-cont)
|
---|
| 1712 | (poly-primitive-part ring (car (ideal-intersection ring (list f) (list g) nil)))))))))
|
---|
| 1713 |
|
---|
| 1714 | ;; Do two Grobner bases yield the same ideal?
|
---|
| 1715 | (defun grobner-equal (ring g1 g2)
|
---|
| 1716 | "Returns T if two lists of polynomials G1 and G2, assumed to be Grobner bases,
|
---|
| 1717 | generate the same ideal, and NIL otherwise."
|
---|
| 1718 | (and (grobner-subsetp ring g1 g2) (grobner-subsetp ring g2 g1)))
|
---|
| 1719 |
|
---|
| 1720 | (defun grobner-subsetp (ring g1 g2)
|
---|
| 1721 | "Returns T if a list of polynomials G1 generates
|
---|
| 1722 | an ideal contained in the ideal generated by a polynomial list G2,
|
---|
| 1723 | both G1 and G2 assumed to be Grobner bases. Returns NIL otherwise."
|
---|
| 1724 | (every #'(lambda (p) (grobner-member ring p g2)) g1))
|
---|
| 1725 |
|
---|
| 1726 | (defun grobner-member (ring p g)
|
---|
| 1727 | "Returns T if a polynomial P belongs to the ideal generated by the
|
---|
| 1728 | polynomial list G, which is assumed to be a Grobner basis. Returns NIL otherwise."
|
---|
| 1729 | (poly-zerop (normal-form ring p g nil)))
|
---|
| 1730 |
|
---|
| 1731 | ;; Calculate F : p^inf
|
---|
| 1732 | (defun ideal-saturation-1 (ring f p start &optional (top-reduction-only $poly_top_reduction_only)
|
---|
| 1733 | &aux (*monomial-order* (or *elimination-order*
|
---|
| 1734 | #'elimination-order-1)))
|
---|
| 1735 | "Returns the reduced Grobner basis of the saturation of the ideal
|
---|
| 1736 | generated by a polynomial list F in the ideal generated by a single
|
---|
| 1737 | polynomial P. The saturation ideal is defined as the set of
|
---|
| 1738 | polynomials H such for some natural number n (* (EXPT P N) H) is in the ideal
|
---|
| 1739 | F. Geometrically, over an algebraically closed field, this is the set
|
---|
| 1740 | of polynomials in the ideal generated by F which do not identically
|
---|
| 1741 | vanish on the variety of P."
|
---|
| 1742 | (mapcar
|
---|
| 1743 | #'poly-contract
|
---|
| 1744 | (ring-intersection
|
---|
| 1745 | (reduced-grobner
|
---|
| 1746 | ring
|
---|
| 1747 | (saturation-extension-1 ring f p)
|
---|
| 1748 | start top-reduction-only)
|
---|
| 1749 | 1)))
|
---|
| 1750 |
|
---|
| 1751 |
|
---|
| 1752 |
|
---|
| 1753 | ;; Calculate F : p1^inf : p2^inf : ... : ps^inf
|
---|
| 1754 | (defun ideal-polysaturation-1 (ring f plist start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
| 1755 | "Returns the reduced Grobner basis of the ideal obtained by a
|
---|
| 1756 | sequence of successive saturations in the polynomials
|
---|
| 1757 | of the polynomial list PLIST of the ideal generated by the
|
---|
| 1758 | polynomial list F."
|
---|
| 1759 | (cond
|
---|
| 1760 | ((endp plist) (reduced-grobner ring f start top-reduction-only))
|
---|
| 1761 | (t (let ((g (ideal-saturation-1 ring f (car plist) start top-reduction-only)))
|
---|
| 1762 | (ideal-polysaturation-1 ring g (rest plist) (length g) top-reduction-only)))))
|
---|
| 1763 |
|
---|
| 1764 | (defun ideal-saturation (ring f g start &optional (top-reduction-only $poly_top_reduction_only)
|
---|
| 1765 | &aux
|
---|
| 1766 | (k (length g))
|
---|
| 1767 | (*monomial-order* (or *elimination-order*
|
---|
| 1768 | (elimination-order k))))
|
---|
| 1769 | "Returns the reduced Grobner basis of the saturation of the ideal
|
---|
| 1770 | generated by a polynomial list F in the ideal generated a polynomial
|
---|
| 1771 | list G. The saturation ideal is defined as the set of polynomials H
|
---|
| 1772 | such for some natural number n and some P in the ideal generated by G
|
---|
| 1773 | the polynomial P**N * H is in the ideal spanned by F. Geometrically,
|
---|
| 1774 | over an algebraically closed field, this is the set of polynomials in
|
---|
| 1775 | the ideal generated by F which do not identically vanish on the
|
---|
| 1776 | variety of G."
|
---|
| 1777 | (mapcar
|
---|
| 1778 | #'(lambda (q) (poly-contract q k))
|
---|
| 1779 | (ring-intersection
|
---|
| 1780 | (reduced-grobner ring
|
---|
| 1781 | (polysaturation-extension ring f g)
|
---|
| 1782 | start
|
---|
| 1783 | top-reduction-only)
|
---|
| 1784 | k)))
|
---|
| 1785 |
|
---|
| 1786 | (defun ideal-polysaturation (ring f ideal-list start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
| 1787 | "Returns the reduced Grobner basis of the ideal obtained by a
|
---|
| 1788 | successive applications of IDEAL-SATURATION to F and lists of
|
---|
| 1789 | polynomials in the list IDEAL-LIST."
|
---|
| 1790 | (cond
|
---|
| 1791 | ((endp ideal-list) f)
|
---|
| 1792 | (t (let ((h (ideal-saturation ring f (car ideal-list) start top-reduction-only)))
|
---|
| 1793 | (ideal-polysaturation ring h (rest ideal-list) (length h) top-reduction-only)))))
|
---|
| 1794 |
|
---|
| 1795 | |
---|
| 1796 |
|
---|
| 1797 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1798 | ;;
|
---|
| 1799 | ;; Set up the coefficients to be polynomials
|
---|
| 1800 | ;;
|
---|
| 1801 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1802 |
|
---|
| 1803 | ;; (defun poly-ring (ring vars)
|
---|
| 1804 | ;; (make-ring
|
---|
| 1805 | ;; :parse #'(lambda (expr) (poly-eval ring expr vars))
|
---|
| 1806 | ;; :unit #'(lambda () (poly-unit ring (length vars)))
|
---|
| 1807 | ;; :zerop #'poly-zerop
|
---|
| 1808 | ;; :add #'(lambda (x y) (poly-add ring x y))
|
---|
| 1809 | ;; :sub #'(lambda (x y) (poly-sub ring x y))
|
---|
| 1810 | ;; :uminus #'(lambda (x) (poly-uminus ring x))
|
---|
| 1811 | ;; :mul #'(lambda (x y) (poly-mul ring x y))
|
---|
| 1812 | ;; :div #'(lambda (x y) (poly-exact-divide ring x y))
|
---|
| 1813 | ;; :lcm #'(lambda (x y) (poly-lcm ring x y))
|
---|
| 1814 | ;; :ezgcd #'(lambda (x y &aux (gcd (poly-gcd ring x y)))
|
---|
| 1815 | ;; (values gcd
|
---|
| 1816 | ;; (poly-exact-divide ring x gcd)
|
---|
| 1817 | ;; (poly-exact-divide ring y gcd)))
|
---|
| 1818 | ;; :gcd #'(lambda (x y) (poly-gcd x y))))
|
---|
| 1819 |
|
---|
| 1820 | |
---|
| 1821 |
|
---|
| 1822 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1823 | ;;
|
---|
| 1824 | ;; Conversion from internal to infix form
|
---|
| 1825 | ;;
|
---|
| 1826 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1827 |
|
---|
| 1828 | (defun coerce-to-infix (poly-type object vars)
|
---|
| 1829 | (case poly-type
|
---|
| 1830 | (:termlist
|
---|
| 1831 | `(+ ,@(mapcar #'(lambda (term) (coerce-to-infix :term term vars)) object)))
|
---|
| 1832 | (:polynomial
|
---|
| 1833 | (coerce-to-infix :termlist (poly-termlist object) vars))
|
---|
| 1834 | (:poly-list
|
---|
| 1835 | `([ ,@(mapcar #'(lambda (p) (coerce-to-infix :polynomial p vars)) object)))
|
---|
| 1836 | (:term
|
---|
| 1837 | `(* ,(term-coeff object)
|
---|
| 1838 | ,@(mapcar #'(lambda (var power) `(expt ,var ,power))
|
---|
| 1839 | vars (monom-exponents (term-monom object)))))
|
---|
| 1840 | (otherwise
|
---|
| 1841 | object)))
|
---|
| 1842 |
|
---|
| 1843 | |
---|
| 1844 |
|
---|
| 1845 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1846 | ;;
|
---|
| 1847 | ;; Maxima expression ring
|
---|
| 1848 | ;;
|
---|
| 1849 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1850 |
|
---|
| 1851 | (defparameter *expression-ring*
|
---|
| 1852 | (make-ring
|
---|
| 1853 | ;;(defun coeff-zerop (expr) (meval1 `(($is) (($equal) ,expr 0))))
|
---|
| 1854 | :parse #'(lambda (expr)
|
---|
| 1855 | (when modulus (setf expr ($rat expr)))
|
---|
| 1856 | expr)
|
---|
| 1857 | :unit #'(lambda () (if modulus ($rat 1) 1))
|
---|
| 1858 | :zerop #'(lambda (expr)
|
---|
| 1859 | ;;When is exactly a maxima expression equal to 0?
|
---|
| 1860 | (cond ((numberp expr)
|
---|
| 1861 | (= expr 0))
|
---|
| 1862 | ((atom expr) nil)
|
---|
| 1863 | (t
|
---|
| 1864 | (case (caar expr)
|
---|
| 1865 | (mrat (eql ($ratdisrep expr) 0))
|
---|
| 1866 | (otherwise (eql ($totaldisrep expr) 0))))))
|
---|
| 1867 | :add #'(lambda (x y) (m+ x y))
|
---|
| 1868 | :sub #'(lambda (x y) (m- x y))
|
---|
| 1869 | :uminus #'(lambda (x) (m- x))
|
---|
| 1870 | :mul #'(lambda (x y) (m* x y))
|
---|
| 1871 | ;;(defun coeff-div (x y) (cadr ($divide x y)))
|
---|
| 1872 | :div #'(lambda (x y) (m// x y))
|
---|
| 1873 | :lcm #'(lambda (x y) (meval1 `((|$LCM|) ,x ,y)))
|
---|
| 1874 | :ezgcd #'(lambda (x y) (apply #'values (cdr ($ezgcd ($totaldisrep x) ($totaldisrep y)))))
|
---|
| 1875 | ;; :gcd #'(lambda (x y) (second ($ezgcd x y)))))
|
---|
| 1876 | :gcd #'(lambda (x y) ($gcd x y))))
|
---|
| 1877 |
|
---|
| 1878 | (defvar *maxima-ring* *expression-ring*
|
---|
| 1879 | "The ring of coefficients, over which all polynomials
|
---|
| 1880 | are assumed to be defined.")
|
---|
| 1881 |
|
---|
| 1882 | |
---|
| 1883 |
|
---|
| 1884 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1885 | ;;
|
---|
| 1886 | ;; Maxima expression parsing
|
---|
| 1887 | ;;
|
---|
| 1888 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1889 |
|
---|
| 1890 | (defun equal-test-p (expr1 expr2)
|
---|
| 1891 | (alike1 expr1 expr2))
|
---|
| 1892 |
|
---|
| 1893 | (defun coerce-maxima-list (expr)
|
---|
| 1894 | "convert a maxima list to lisp list."
|
---|
| 1895 | (cond
|
---|
| 1896 | ((and (consp (car expr)) (eql (caar expr) 'mlist)) (cdr expr))
|
---|
| 1897 | (t expr)))
|
---|
| 1898 |
|
---|
| 1899 | (defun free-of-vars (expr vars) (apply #'$freeof `(,@vars ,expr)))
|
---|
| 1900 |
|
---|
| 1901 | (defun parse-poly (expr vars &aux (vars (coerce-maxima-list vars)))
|
---|
| 1902 | "Convert a maxima polynomial expression EXPR in variables VARS to internal form."
|
---|
| 1903 | (labels ((parse (arg) (parse-poly arg vars))
|
---|
| 1904 | (parse-list (args) (mapcar #'parse args)))
|
---|
| 1905 | (cond
|
---|
| 1906 | ((eql expr 0) (make-poly-zero))
|
---|
| 1907 | ((member expr vars :test #'equal-test-p)
|
---|
| 1908 | (let ((pos (position expr vars :test #'equal-test-p)))
|
---|
| 1909 | (make-variable *maxima-ring* (length vars) pos)))
|
---|
| 1910 | ((free-of-vars expr vars)
|
---|
| 1911 | ;;This means that variable-free CRE and Poisson forms will be converted
|
---|
| 1912 | ;;to coefficients intact
|
---|
| 1913 | (coerce-coeff *maxima-ring* expr vars))
|
---|
| 1914 | (t
|
---|
| 1915 | (case (caar expr)
|
---|
| 1916 | (mplus (reduce #'(lambda (x y) (poly-add *maxima-ring* x y)) (parse-list (cdr expr))))
|
---|
| 1917 | (mminus (poly-uminus *maxima-ring* (parse (cadr expr))))
|
---|
| 1918 | (mtimes
|
---|
| 1919 | (if (endp (cddr expr)) ;unary
|
---|
| 1920 | (parse (cdr expr))
|
---|
| 1921 | (reduce #'(lambda (p q) (poly-mul *maxima-ring* p q)) (parse-list (cdr expr)))))
|
---|
| 1922 | (mexpt
|
---|
| 1923 | (cond
|
---|
| 1924 | ((member (cadr expr) vars :test #'equal-test-p)
|
---|
| 1925 | ;;Special handling of (expt var pow)
|
---|
| 1926 | (let ((pos (position (cadr expr) vars :test #'equal-test-p)))
|
---|
| 1927 | (make-variable *maxima-ring* (length vars) pos (caddr expr))))
|
---|
| 1928 | ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
|
---|
| 1929 | ;; Negative power means division in coefficient ring
|
---|
| 1930 | ;; Non-integer power means non-polynomial coefficient
|
---|
| 1931 | (mtell "~%Warning: Expression ~%~M~%contains power which is not a positive integer. Parsing as coefficient.~%"
|
---|
| 1932 | expr)
|
---|
| 1933 | (coerce-coeff *maxima-ring* expr vars))
|
---|
| 1934 | (t (poly-expt *maxima-ring* (parse (cadr expr)) (caddr expr)))))
|
---|
| 1935 | (mrat (parse ($ratdisrep expr)))
|
---|
| 1936 | (mpois (parse ($outofpois expr)))
|
---|
| 1937 | (otherwise
|
---|
| 1938 | (coerce-coeff *maxima-ring* expr vars)))))))
|
---|
| 1939 |
|
---|
| 1940 | (defun parse-poly-list (expr vars)
|
---|
| 1941 | (case (caar expr)
|
---|
| 1942 | (mlist (mapcar #'(lambda (p) (parse-poly p vars)) (cdr expr)))
|
---|
| 1943 | (t (merror "Expression ~M is not a list of polynomials in variables ~M."
|
---|
| 1944 | expr vars))))
|
---|
| 1945 | (defun parse-poly-list-list (poly-list-list vars)
|
---|
| 1946 | (mapcar #'(lambda (g) (parse-poly-list g vars)) (coerce-maxima-list poly-list-list)))
|
---|
| 1947 |
|
---|
| 1948 | |
---|
| 1949 |
|
---|
| 1950 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1951 | ;;
|
---|
| 1952 | ;; Order utilities
|
---|
| 1953 | ;;
|
---|
| 1954 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 1955 | (defun find-order (order)
|
---|
| 1956 | "This function returns the order function bases on its name."
|
---|
| 1957 | (cond
|
---|
| 1958 | ((null order) nil)
|
---|
| 1959 | ((symbolp order)
|
---|
| 1960 | (case order
|
---|
| 1961 | ((lex :lex $lex) #'lex>)
|
---|
| 1962 | ((grlex :grlex $grlex) #'grlex>)
|
---|
| 1963 | ((grevlex :grevlex $grevlex) #'grevlex>)
|
---|
| 1964 | ((invlex :invlex $invlex) #'invlex>)
|
---|
| 1965 | ((elimination-order-1 :elimination-order-1 elimination_order_1) #'elimination-order-1)
|
---|
| 1966 | (otherwise
|
---|
| 1967 | (mtell "~%Warning: Order ~M not found. Using default.~%" order))))
|
---|
| 1968 | (t
|
---|
| 1969 | (mtell "~%Order specification ~M is not recognized. Using default.~%" order)
|
---|
| 1970 | nil)))
|
---|
| 1971 |
|
---|
| 1972 | (defun find-ring (ring)
|
---|
| 1973 | "This function returns the ring structure bases on input symbol."
|
---|
| 1974 | (cond
|
---|
| 1975 | ((null ring) nil)
|
---|
| 1976 | ((symbolp ring)
|
---|
| 1977 | (case ring
|
---|
| 1978 | ((expression-ring :expression-ring $expression_ring) *expression-ring*)
|
---|
| 1979 | ((ring-of-integers :ring-of-integers $ring_of_integers) *ring-of-integers*)
|
---|
| 1980 | (otherwise
|
---|
| 1981 | (mtell "~%Warning: Ring ~M not found. Using default.~%" ring))))
|
---|
| 1982 | (t
|
---|
| 1983 | (mtell "~%Ring specification ~M is not recognized. Using default.~%" ring)
|
---|
| 1984 | nil)))
|
---|
| 1985 |
|
---|
| 1986 | (defmacro with-monomial-order ((order) &body body)
|
---|
| 1987 | "Evaluate BODY with monomial order set to ORDER."
|
---|
| 1988 | `(let ((*monomial-order* (or (find-order ,order) *monomial-order*)))
|
---|
| 1989 | . ,body))
|
---|
| 1990 |
|
---|
| 1991 | (defmacro with-coefficient-ring ((ring) &body body)
|
---|
| 1992 | "Evaluate BODY with coefficient ring set to RING."
|
---|
| 1993 | `(let ((*maxima-ring* (or (find-ring ,ring) *maxima-ring*)))
|
---|
| 1994 | . ,body))
|
---|
| 1995 |
|
---|
| 1996 | (defmacro with-elimination-orders ((primary secondary elimination-order)
|
---|
| 1997 | &body body)
|
---|
| 1998 | "Evaluate BODY with primary and secondary elimination orders set to PRIMARY and SECONDARY."
|
---|
| 1999 | `(let ((*primary-elimination-order* (or (find-order ,primary) *primary-elimination-order*))
|
---|
| 2000 | (*secondary-elimination-order* (or (find-order ,secondary) *secondary-elimination-order*))
|
---|
| 2001 | (*elimination-order* (or (find-order ,elimination-order) *elimination-order*)))
|
---|
| 2002 | . ,body))
|
---|
| 2003 |
|
---|
| 2004 | |
---|
| 2005 |
|
---|
| 2006 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 2007 | ;;
|
---|
| 2008 | ;; Conversion from internal form to Maxima general form
|
---|
| 2009 | ;;
|
---|
| 2010 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 2011 |
|
---|
| 2012 | (defun maxima-head ()
|
---|
| 2013 | (if $poly_return_term_list
|
---|
| 2014 | '(mlist)
|
---|
| 2015 | '(mplus)))
|
---|
| 2016 |
|
---|
| 2017 | (defun coerce-to-maxima (poly-type object vars)
|
---|
| 2018 | (case poly-type
|
---|
| 2019 | (:polynomial
|
---|
| 2020 | `(,(maxima-head) ,@(mapcar #'(lambda (term) (coerce-to-maxima :term term vars)) (poly-termlist object))))
|
---|
| 2021 | (:poly-list
|
---|
| 2022 | `((mlist) ,@(mapcar #'(lambda (p) ($ratdisrep (coerce-to-maxima :polynomial p vars))) object)))
|
---|
| 2023 | (:term
|
---|
| 2024 | `((mtimes) ,($ratdisrep (term-coeff object))
|
---|
| 2025 | ,@(mapcar #'(lambda (var power) `((mexpt) ,var ,power))
|
---|
| 2026 | vars (monom-exponents (term-monom object)))))
|
---|
| 2027 | ;; Assumes that Lisp and Maxima logicals coincide
|
---|
| 2028 | (:logical object)
|
---|
| 2029 | (otherwise
|
---|
| 2030 | object)))
|
---|
| 2031 |
|
---|
| 2032 | |
---|
| 2033 |
|
---|
| 2034 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 2035 | ;;
|
---|
| 2036 | ;; Macro facility for writing Maxima-level wrappers for
|
---|
| 2037 | ;; functions operating on internal representation
|
---|
| 2038 | ;;
|
---|
| 2039 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 2040 |
|
---|
| 2041 | (defmacro with-parsed-polynomials (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p))
|
---|
| 2042 | &key (polynomials nil)
|
---|
| 2043 | (poly-lists nil)
|
---|
| 2044 | (poly-list-lists nil)
|
---|
| 2045 | (value-type nil))
|
---|
| 2046 | &body body
|
---|
| 2047 | &aux (vars (gensym))
|
---|
| 2048 | (new-vars (gensym)))
|
---|
| 2049 | `(let ((,vars (coerce-maxima-list ,maxima-vars))
|
---|
| 2050 | ,@(when new-vars-supplied-p
|
---|
| 2051 | (list `(,new-vars (coerce-maxima-list ,maxima-new-vars)))))
|
---|
| 2052 | (coerce-to-maxima
|
---|
| 2053 | ,value-type
|
---|
| 2054 | (with-coefficient-ring ($poly_coefficient_ring)
|
---|
| 2055 | (with-monomial-order ($poly_monomial_order)
|
---|
| 2056 | (with-elimination-orders ($poly_primary_elimination_order
|
---|
| 2057 | $poly_secondary_elimination_order
|
---|
| 2058 | $poly_elimination_order)
|
---|
| 2059 | (let ,(let ((args nil))
|
---|
| 2060 | (dolist (p polynomials args)
|
---|
| 2061 | (setf args (cons `(,p (parse-poly ,p ,vars)) args)))
|
---|
| 2062 | (dolist (p poly-lists args)
|
---|
| 2063 | (setf args (cons `(,p (parse-poly-list ,p ,vars)) args)))
|
---|
| 2064 | (dolist (p poly-list-lists args)
|
---|
| 2065 | (setf args (cons `(,p (parse-poly-list-list ,p ,vars)) args))))
|
---|
| 2066 | . ,body))))
|
---|
| 2067 | ,(if new-vars-supplied-p
|
---|
| 2068 | `(append ,vars ,new-vars)
|
---|
| 2069 | vars))))
|
---|
| 2070 |
|
---|
| 2071 | (defmacro define-unop (maxima-name fun-name
|
---|
| 2072 | &optional (documentation nil documentation-supplied-p))
|
---|
| 2073 | "Define a MAXIMA-level unary operator MAXIMA-NAME corresponding to unary function FUN-NAME."
|
---|
| 2074 | `(defun ,maxima-name (p vars
|
---|
| 2075 | &aux
|
---|
| 2076 | (vars (coerce-maxima-list vars))
|
---|
| 2077 | (p (parse-poly p vars)))
|
---|
| 2078 | ,@(when documentation-supplied-p (list documentation))
|
---|
| 2079 | (coerce-to-maxima :polynomial (,fun-name *maxima-ring* p) vars)))
|
---|
| 2080 |
|
---|
| 2081 | (defmacro define-binop (maxima-name fun-name
|
---|
| 2082 | &optional (documentation nil documentation-supplied-p))
|
---|
| 2083 | "Define a MAXIMA-level binary operator MAXIMA-NAME corresponding to binary function FUN-NAME."
|
---|
| 2084 | `(defmfun ,maxima-name (p q vars
|
---|
| 2085 | &aux
|
---|
| 2086 | (vars (coerce-maxima-list vars))
|
---|
| 2087 | (p (parse-poly p vars))
|
---|
| 2088 | (q (parse-poly q vars)))
|
---|
| 2089 | ,@(when documentation-supplied-p (list documentation))
|
---|
| 2090 | (coerce-to-maxima :polynomial (,fun-name *maxima-ring* p q) vars)))
|
---|
| 2091 |
|
---|
| 2092 | |
---|
| 2093 |
|
---|
| 2094 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 2095 | ;;
|
---|
| 2096 | ;; Maxima-level interface functions
|
---|
| 2097 | ;;
|
---|
| 2098 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 2099 |
|
---|
| 2100 | ;; Auxillary function for removing zero polynomial
|
---|
| 2101 | (defun remzero (plist) (remove #'poly-zerop plist))
|
---|
| 2102 |
|
---|
| 2103 | ;;Simple operators
|
---|
| 2104 |
|
---|
| 2105 | (define-binop $poly_add poly-add
|
---|
| 2106 | "Adds two polynomials P and Q")
|
---|
| 2107 |
|
---|
| 2108 | (define-binop $poly_subtract poly-sub
|
---|
| 2109 | "Subtracts a polynomial Q from P.")
|
---|
| 2110 |
|
---|
| 2111 | (define-binop $poly_multiply poly-mul
|
---|
| 2112 | "Returns the product of polynomials P and Q.")
|
---|
| 2113 |
|
---|
| 2114 | (define-binop $poly_s_polynomial spoly
|
---|
| 2115 | "Returns the syzygy polynomial (S-polynomial) of two polynomials P and Q.")
|
---|
| 2116 |
|
---|
| 2117 | (define-unop $poly_primitive_part poly-primitive-part
|
---|
| 2118 | "Returns the polynomial P divided by GCD of its coefficients.")
|
---|
| 2119 |
|
---|
| 2120 | (define-unop $poly_normalize poly-normalize
|
---|
| 2121 | "Returns the polynomial P divided by the leading coefficient.")
|
---|
| 2122 |
|
---|
| 2123 | ;;Functions
|
---|
| 2124 |
|
---|
| 2125 | (defmfun $poly_expand (p vars)
|
---|
| 2126 | "This function is equivalent to EXPAND(P) if P parses correctly to a polynomial.
|
---|
| 2127 | If the representation is not compatible with a polynomial in variables VARS,
|
---|
| 2128 | the result is an error."
|
---|
| 2129 | (with-parsed-polynomials ((vars) :polynomials (p)
|
---|
| 2130 | :value-type :polynomial)
|
---|
| 2131 | p))
|
---|
| 2132 |
|
---|
| 2133 | (defmfun $poly_expt (p n vars)
|
---|
| 2134 | (with-parsed-polynomials ((vars) :polynomials (p) :value-type :polynomial)
|
---|
| 2135 | (poly-expt *maxima-ring* p n)))
|
---|
| 2136 |
|
---|
| 2137 | (defmfun $poly_content (p vars)
|
---|
| 2138 | (with-parsed-polynomials ((vars) :polynomials (p))
|
---|
| 2139 | (poly-content *maxima-ring* p)))
|
---|
| 2140 |
|
---|
| 2141 | (defmfun $poly_pseudo_divide (f fl vars
|
---|
| 2142 | &aux (vars (coerce-maxima-list vars))
|
---|
| 2143 | (f (parse-poly f vars))
|
---|
| 2144 | (fl (parse-poly-list fl vars)))
|
---|
| 2145 | (multiple-value-bind (quot rem c division-count)
|
---|
| 2146 | (poly-pseudo-divide *maxima-ring* f fl)
|
---|
| 2147 | `((mlist)
|
---|
| 2148 | ,(coerce-to-maxima :poly-list quot vars)
|
---|
| 2149 | ,(coerce-to-maxima :polynomial rem vars)
|
---|
| 2150 | ,c
|
---|
| 2151 | ,division-count)))
|
---|
| 2152 |
|
---|
| 2153 | (defmfun $poly_exact_divide (f g vars)
|
---|
| 2154 | (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
|
---|
| 2155 | (poly-exact-divide *maxima-ring* f g)))
|
---|
| 2156 |
|
---|
| 2157 | (defmfun $poly_normal_form (f fl vars)
|
---|
| 2158 | (with-parsed-polynomials ((vars) :polynomials (f)
|
---|
| 2159 | :poly-lists (fl)
|
---|
| 2160 | :value-type :polynomial)
|
---|
| 2161 | (normal-form *maxima-ring* f (remzero fl) nil)))
|
---|
| 2162 |
|
---|
| 2163 | (defmfun $poly_buchberger_criterion (g vars)
|
---|
| 2164 | (with-parsed-polynomials ((vars) :poly-lists (g) :value-type :logical)
|
---|
| 2165 | (buchberger-criterion *maxima-ring* g)))
|
---|
| 2166 |
|
---|
| 2167 | (defmfun $poly_buchberger (fl vars)
|
---|
| 2168 | (with-parsed-polynomials ((vars) :poly-lists (fl) :value-type :poly-list)
|
---|
| 2169 | (buchberger *maxima-ring* (remzero fl) 0 nil)))
|
---|
| 2170 |
|
---|
| 2171 | (defmfun $poly_reduction (plist vars)
|
---|
| 2172 | (with-parsed-polynomials ((vars) :poly-lists (plist)
|
---|
| 2173 | :value-type :poly-list)
|
---|
| 2174 | (reduction *maxima-ring* plist)))
|
---|
| 2175 |
|
---|
| 2176 | (defmfun $poly_minimization (plist vars)
|
---|
| 2177 | (with-parsed-polynomials ((vars) :poly-lists (plist)
|
---|
| 2178 | :value-type :poly-list)
|
---|
| 2179 | (minimization plist)))
|
---|
| 2180 |
|
---|
| 2181 | (defmfun $poly_normalize_list (plist vars)
|
---|
| 2182 | (with-parsed-polynomials ((vars) :poly-lists (plist)
|
---|
| 2183 | :value-type :poly-list)
|
---|
| 2184 | (poly-normalize-list *maxima-ring* plist)))
|
---|
| 2185 |
|
---|
| 2186 | (defmfun $poly_grobner (f vars)
|
---|
| 2187 | (with-parsed-polynomials ((vars) :poly-lists (f)
|
---|
| 2188 | :value-type :poly-list)
|
---|
| 2189 | (grobner *maxima-ring* (remzero f))))
|
---|
| 2190 |
|
---|
| 2191 | (defmfun $poly_reduced_grobner (f vars)
|
---|
| 2192 | (with-parsed-polynomials ((vars) :poly-lists (f)
|
---|
| 2193 | :value-type :poly-list)
|
---|
| 2194 | (reduced-grobner *maxima-ring* (remzero f))))
|
---|
| 2195 |
|
---|
| 2196 | (defmfun $poly_depends_p (p var mvars
|
---|
| 2197 | &aux (vars (coerce-maxima-list mvars))
|
---|
| 2198 | (pos (position var vars)))
|
---|
| 2199 | (if (null pos)
|
---|
| 2200 | (merror "~%Variable ~M not in the list of variables ~M." var mvars)
|
---|
| 2201 | (poly-depends-p (parse-poly p vars) pos)))
|
---|
| 2202 |
|
---|
| 2203 | (defmfun $poly_elimination_ideal (flist k vars)
|
---|
| 2204 | (with-parsed-polynomials ((vars) :poly-lists (flist)
|
---|
| 2205 | :value-type :poly-list)
|
---|
| 2206 | (elimination-ideal *maxima-ring* flist k nil 0)))
|
---|
| 2207 |
|
---|
| 2208 | (defmfun $poly_colon_ideal (f g vars)
|
---|
| 2209 | (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
|
---|
| 2210 | (colon-ideal *maxima-ring* f g nil)))
|
---|
| 2211 |
|
---|
| 2212 | (defmfun $poly_ideal_intersection (f g vars)
|
---|
| 2213 | (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
|
---|
| 2214 | (ideal-intersection *maxima-ring* f g nil)))
|
---|
| 2215 |
|
---|
| 2216 | (defmfun $poly_lcm (f g vars)
|
---|
| 2217 | (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
|
---|
| 2218 | (poly-lcm *maxima-ring* f g)))
|
---|
| 2219 |
|
---|
| 2220 | (defmfun $poly_gcd (f g vars)
|
---|
| 2221 | ($first ($divide (m* f g) ($poly_lcm f g vars))))
|
---|
| 2222 |
|
---|
| 2223 | (defmfun $poly_grobner_equal (g1 g2 vars)
|
---|
| 2224 | (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
|
---|
| 2225 | (grobner-equal *maxima-ring* g1 g2)))
|
---|
| 2226 |
|
---|
| 2227 | (defmfun $poly_grobner_subsetp (g1 g2 vars)
|
---|
| 2228 | (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
|
---|
| 2229 | (grobner-subsetp *maxima-ring* g1 g2)))
|
---|
| 2230 |
|
---|
| 2231 | (defmfun $poly_grobner_member (p g vars)
|
---|
| 2232 | (with-parsed-polynomials ((vars) :polynomials (p) :poly-lists (g))
|
---|
| 2233 | (grobner-member *maxima-ring* p g)))
|
---|
| 2234 |
|
---|
| 2235 | (defmfun $poly_ideal_saturation1 (f p vars)
|
---|
| 2236 | (with-parsed-polynomials ((vars) :poly-lists (f) :polynomials (p)
|
---|
| 2237 | :value-type :poly-list)
|
---|
| 2238 | (ideal-saturation-1 *maxima-ring* f p 0)))
|
---|
| 2239 |
|
---|
| 2240 | (defmfun $poly_saturation_extension (f plist vars new-vars)
|
---|
| 2241 | (with-parsed-polynomials ((vars new-vars)
|
---|
| 2242 | :poly-lists (f plist)
|
---|
| 2243 | :value-type :poly-list)
|
---|
| 2244 | (saturation-extension *maxima-ring* f plist)))
|
---|
| 2245 |
|
---|
| 2246 | (defmfun $poly_polysaturation_extension (f plist vars new-vars)
|
---|
| 2247 | (with-parsed-polynomials ((vars new-vars)
|
---|
| 2248 | :poly-lists (f plist)
|
---|
| 2249 | :value-type :poly-list)
|
---|
| 2250 | (polysaturation-extension *maxima-ring* f plist)))
|
---|
| 2251 |
|
---|
| 2252 | (defmfun $poly_ideal_polysaturation1 (f plist vars)
|
---|
| 2253 | (with-parsed-polynomials ((vars) :poly-lists (f plist)
|
---|
| 2254 | :value-type :poly-list)
|
---|
| 2255 | (ideal-polysaturation-1 *maxima-ring* f plist 0 nil)))
|
---|
| 2256 |
|
---|
| 2257 | (defmfun $poly_ideal_saturation (f g vars)
|
---|
| 2258 | (with-parsed-polynomials ((vars) :poly-lists (f g)
|
---|
| 2259 | :value-type :poly-list)
|
---|
| 2260 | (ideal-saturation *maxima-ring* f g 0 nil)))
|
---|
| 2261 |
|
---|
| 2262 | (defmfun $poly_ideal_polysaturation (f ideal-list vars)
|
---|
| 2263 | (with-parsed-polynomials ((vars) :poly-lists (f)
|
---|
| 2264 | :poly-list-lists (ideal-list)
|
---|
| 2265 | :value-type :poly-list)
|
---|
| 2266 | (ideal-polysaturation *maxima-ring* f ideal-list 0 nil)))
|
---|
| 2267 |
|
---|
| 2268 | (defmfun $poly_lt (f vars)
|
---|
| 2269 | (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
|
---|
| 2270 | (make-poly-from-termlist (list (poly-lt f)))))
|
---|
| 2271 |
|
---|
| 2272 | (defmfun $poly_lm (f vars)
|
---|
| 2273 | (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
|
---|
| 2274 | (make-poly-from-termlist (list (make-term (poly-lm f) (funcall (ring-unit *maxima-ring*)))))))
|
---|
| 2275 |
|
---|