[2] | 1 | /* -*- Mode: Maxima -*- */
|
---|
| 2 |
|
---|
| 3 | /*
|
---|
| 4 | **
|
---|
[6] | 5 | ** Copyright (C) 1999, 2002, 2009 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
[2] | 6 | **
|
---|
| 7 | ** This program is free software; you can redistribute it and/or modify
|
---|
| 8 | ** it under the terms of the GNU General Public License as published by
|
---|
| 9 | ** the Free Software Foundation; either version 2 of the License, or
|
---|
| 10 | ** (at your option) any later version.
|
---|
| 11 | **
|
---|
| 12 | ** This program is distributed in the hope that it will be useful,
|
---|
| 13 | ** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | ** GNU General Public License for more details.
|
---|
| 16 | **
|
---|
| 17 | ** You should have received a copy of the GNU General Public License
|
---|
| 18 | ** along with this program; if not, write to the Free Software
|
---|
| 19 | ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 20 | **
|
---|
| 21 | */
|
---|
| 22 | showtime:true;
|
---|
| 23 |
|
---|
| 24 | /* POLY_MONOMIAL_ORDER switch represents the monomial order that will globally be in effect
|
---|
| 25 | for the succeeding operations. */
|
---|
| 26 |
|
---|
| 27 | poly_monomial_order:'lex;
|
---|
| 28 |
|
---|
| 29 | /* POLY_EXPAND parses polynomials to internal form and back. It can be used to test
|
---|
| 30 | whether an expression correctly parses to the internal representation.
|
---|
| 31 | The following examples illustrate that indexed and transcendental function variables
|
---|
| 32 | are allowed. */
|
---|
| 33 |
|
---|
| 34 | poly_expand(x,[x,y]);
|
---|
| 35 | poly_expand(x+y,[x,y]);
|
---|
| 36 | poly_expand(x-y,[x,y]);
|
---|
| 37 | poly_expand((x-y)*(x+y),[x,y]);
|
---|
| 38 | poly_expand((x+y)^2,[x,y]);
|
---|
| 39 | poly_expand((x+y)^5,[x,y]);
|
---|
| 40 | poly_expand(x/y-1,[x]);
|
---|
| 41 | poly_expand(x^2/sqrt(y)-x*exp(y)-1,[x]);
|
---|
| 42 | poly_expand(sin(x)-sin(x)^2-1,[sin(x)]);
|
---|
| 43 | poly_expand((x[2]/sin(y[3])-1)^5,[x[2]]),poly_return_term_list:true;
|
---|
| 44 |
|
---|
| 45 | /* POLY_ADD, POLY_SUBTRACT, POLY_MULTIPLY and POLY_EXPT are the arithmetical operations on polynomials.
|
---|
| 46 | These are performed using the internal representation, but the results are converted back to the
|
---|
| 47 | Maxima general form */
|
---|
| 48 |
|
---|
| 49 | poly_add(x^2*y+z,x-z,[x,y,z]);
|
---|
| 50 | poly_subtract(x^2*y+z,x-z,[x,y,z]);
|
---|
| 51 | poly_multiply(x^2*y+z,x-z,[x,y,z]) - (x^2*y+z)*(x-z), expand;
|
---|
| 52 | poly_expt(x-y, 3, [x,y]) - (x-y)^3, expand;
|
---|
| 53 |
|
---|
| 54 | /* POLY_CONTENT extracts the GCD of its coefficients */
|
---|
| 55 | poly_content(21*x+35*y,[x,y]);
|
---|
| 56 |
|
---|
| 57 | /* POLY_PRIMITIVE_PART divides a polynomial by the GCD of its coefficients */
|
---|
| 58 | poly_primitive_part(21*x+35*y,[x,y]);
|
---|
| 59 |
|
---|
| 60 | /* POLY_S_POLYNOMIAL computest the syzygy polynomial (S-polynomial) of two polynomials */
|
---|
| 61 | poly_s_polynomial(x+y,x-y,[x,y]);
|
---|
| 62 |
|
---|
| 63 |
|
---|
| 64 | /* POLY_NORMAL_FORM finds the normal form of a polynomial with respect to a set of polynomials. */
|
---|
| 65 | poly_normal_form(x^2+y^2,[x-y,x+y],[x,y]);
|
---|
| 66 | poly_pseudo_divide(2*x^2+3*y^2,[7*x-y^2,11*x+y],[x,y]);
|
---|
| 67 | poly_exact_divide((x+y)^2,x+y,[x,y]);
|
---|
| 68 |
|
---|
| 69 | /* POLY_BUCHBERGER performs the Buchberger algorithm on a list of polynomials and returns
|
---|
| 70 | the resulting Grobner basis */
|
---|
| 71 | poly_buchberger([x^2-y*x,x^2+y+x*y^2],[x,y]);
|
---|
| 72 |
|
---|
| 73 | /* POLY_REDUCTION reduces a set of polynomials, so that
|
---|
| 74 | each polynomial is fully reduced with respect to the other polynomials */
|
---|
| 75 |
|
---|
| 76 | poly_reduction([x^2-x*y,x*y^2+y+x^2,x*y^2+x*y+y,x*y-y^2,y^3+y^2+y],[x,y]);
|
---|
| 77 |
|
---|
| 78 | /* POLY_MINIMIZATION selects a subset of a set of polynomials, so that no leading monomial is divisible by
|
---|
| 79 | another leading monomial */
|
---|
| 80 |
|
---|
| 81 | poly_minimization([x^2-x*y,x*y^2+y+x^2,x*y^2+x*y+y,x*y-y^2,y^3+y^2+y],[x,y]);
|
---|
| 82 |
|
---|
| 83 | /* POLY_REDUCED_GROBNER returns a reduced Grobner basis */
|
---|
| 84 | poly_reduced_grobner([x^2-y*x,x^2+y+x*y^2],[x,y]);
|
---|
| 85 |
|
---|
| 86 | /* POLY_NORMALIZE divides a polynomial by its leading coefficient */
|
---|
| 87 | poly_normalize(2*x+y,[x,y]);
|
---|
| 88 |
|
---|
| 89 | /* POLY_NORMALIZE_LIST applies POLY_NORMALIZE to each polynomial in the list */
|
---|
| 90 |
|
---|
| 91 | poly_normalize_list([2*x+y,3*x^2+7],[x,y]);
|
---|
| 92 |
|
---|
| 93 | /* POLY_DEPENDS_P tests whether a polynomial depends on a variable */
|
---|
| 94 |
|
---|
| 95 | poly_depends_p(x^2+y,x,[x,y,z]);
|
---|
| 96 | poly_depends_p(x^2+y,z,[x,y,z]);
|
---|
| 97 |
|
---|
| 98 |
|
---|
| 99 | /* POLY_ELIMINATION_IDEAL returns the grobner basis of the K-th elimination ideal of an
|
---|
| 100 | ideal specified as a list of generating polynomials (not necessarily Grobner basis */
|
---|
| 101 |
|
---|
| 102 | poly_elimination_ideal([x+y,x-y],0,[x,y]);
|
---|
| 103 | poly_elimination_ideal([x+y,x-y],1,[x,y]);
|
---|
| 104 | poly_elimination_ideal([x+y,x-y],2,[x,y]);
|
---|
| 105 |
|
---|
| 106 | /* POLY_IDEAL_INTERSECTION returns the intersection of two ideals */
|
---|
| 107 | poly_ideal_intersection([x^2+y,x^2-y],[x,y^2],[x,y]);
|
---|
| 108 |
|
---|
| 109 | /* POLY_LCM and POLY_GCD are the Grobner versions of LCM and GCD */
|
---|
| 110 |
|
---|
| 111 | poly_lcm(x*y^2-x,x^2*y+x,[x,y]);
|
---|
| 112 | poly_gcd(x*y^2-x,x^2*y+x,[x,y]);
|
---|
| 113 |
|
---|
| 114 | /* POLY_GROBNER_MEMBER tests whether a polynomial belongs to an ideal generated by a list of polynomials,
|
---|
| 115 | which is assumed to be a Grobner basis. Equivalent to NORMAL_FORM being 0. */
|
---|
| 116 |
|
---|
| 117 | poly_grobner_member(x+y,[x,y],[x,y]);
|
---|
| 118 |
|
---|
| 119 | /* POLY_GROBNER_EQUAL tests whether two Grobner bases generate the same ideal.
|
---|
| 120 | This is equivalent to checking that every polynomial of the first basis reduces to 0
|
---|
| 121 | modulo the second basis and vice versa. Note that in the example below the
|
---|
| 122 | first list is not a Grobner basis, and thus the result is FALSE. */
|
---|
| 123 |
|
---|
| 124 | poly_grobner_equal([x+y,x-y],[x,y],[x,y]);
|
---|
| 125 |
|
---|
| 126 | /* POLY_GROBNER_SUBSETP tests whether an ideal generated by the first list of polynomials
|
---|
| 127 | is contained in the ideal generated by the second list. For this test to always succeed,
|
---|
| 128 | the second list must be a Grobner basis */
|
---|
| 129 |
|
---|
| 130 | poly_grobner_subsetp([x+y,x-y],[x,y],[x,y]);
|
---|
| 131 |
|
---|
| 132 | /* POLY_POLYSATURATION_EXTENSION implements the famous Rabinowitz trick. */
|
---|
| 133 | poly_polysaturation_extension([x,y],[x^2,y^3],[x,y],[u,v]);
|
---|
| 134 |
|
---|
| 135 | poly_saturation_extension([x,y],[x^2,y^3],[x,y],[u,v]);
|
---|
| 136 |
|
---|
| 137 | /* POLY_IDEAL_POLYSATURATION1 for a given ideal I and polynomials f, g, ..., finds
|
---|
| 138 | the colon ideal I : f^inf : g^inf : ... */
|
---|
| 139 | poly_ideal_polysaturation1([x,y],[x^2,y^3],[x,y]);
|
---|
| 140 |
|
---|
| 141 | /* POLY_IDEAL_SATURATION for given ideals I and J computes the ideal I : J^inf. */
|
---|
| 142 | poly_ideal_saturation([x,y],[x^2,y^3],[x,y]);
|
---|
| 143 |
|
---|
| 144 | /* POLY_IDEAL_POLYSATURATION for a given ideal I and a sequence of ideals J1, J2, J3, ...,
|
---|
| 145 | finds the ideal I : J1^inf : J2^inf : J3^inf : ... */
|
---|
| 146 | poly_ideal_polysaturation([x,y],[[x^2],[y^3]],[x,y]);
|
---|
| 147 | poly_ideal_polysaturation([x^4-y^4], [[x-y],[x^2+y^2, x+y]],[x,y]);
|
---|
| 148 |
|
---|
[3740] | 149 | /* POLY_COLON_IDEAL finds the reduced Grobner basis of the colon ideal I:J, i.e. the set of polynomials H
|
---|
[4555] | 150 | such that for every polynomial G in I there is a polynomial F in J for which H*F=G;
|
---|
| 151 | in other words, I:J = {h: h*J is contained in I} */
|
---|
[2] | 152 |
|
---|
| 153 | poly_colon_ideal([x^2*y],[y],[x,y]);
|
---|
| 154 |
|
---|
| 155 | /* POLY_BUCHBERGER_CRITERION verifies whether a given set of polynomials is a Grobner basis with respect
|
---|
| 156 | to the current term order */
|
---|
| 157 | poly_buchberger_criterion([x,y],[x,y]);
|
---|
| 158 | poly_buchberger_criterion([x-y,x+y],[x,y]);
|
---|
| 159 |
|
---|
| 160 | /* Grobner basis associated with Enneper minimal surface */
|
---|
| 161 | poly_grobner([x-3*u-3*u*v^2+u^3,y-3*v-3*u^2*v+v^3,z-3*u^2+3*v^2],[u,v,x,y,z]);
|
---|
| 162 | poly_reduced_grobner([x-3*u-3*u*v^2+u^3,y-3*v-3*u^2*v+v^3,z-3*u^2+3*v^2],[u,v,x,y,z]);
|
---|
| 163 |
|
---|
| 164 | /* Cyclic roots of degree 5 */
|
---|
| 165 | poly_reduced_grobner([x+y+z+u+v,x*y+y*z+z*u+u*v+v*x,x*y*z+y*z*u+z*u*v+u*v*x+v*x*y,x*y*z*u+y*z*u*v+z*u*v*x+u*v*x*y+v*x*y*z,x*y*z*u*v-1],[u,v,x,y,z]);
|
---|
| 166 |
|
---|
| 167 | /* The next example demonstrates the use of the switch
|
---|
| 168 | POLY_RETURN_TERM_LIST, which, if set to TRUE, makes the results to
|
---|
| 169 | appear as lists of terms listed in the current monomial order rather
|
---|
| 170 | than a general form expression */
|
---|
| 171 |
|
---|
| 172 | block([orders:[lex,grlex,grevlex,invlex]],
|
---|
| 173 | for i:1 thru length(orders) do (
|
---|
| 174 | print(ev([orders[i], poly_expand((x^2+x+y)^3,[x,y])], poly_monomial_order=orders[i]))
|
---|
| 175 | )
|
---|
| 176 | ), poly_return_term_list=true;
|
---|
| 177 |
|
---|
| 178 | /* Grobner bases can be computed over coefficient ring of maxima general expressions */
|
---|
| 179 | poly_grobner([x*y-1,x+y],[x]);
|
---|
| 180 |
|
---|
| 181 | /* A tough example learned from Cox */
|
---|
| 182 | poly_grobner([x^5+y^4+z^3-1,x^3+y^3+z^2-1], [x,y,z]);
|
---|
| 183 |
|
---|
| 184 | /* An even tougher example of Cox */
|
---|
| 185 | poly_grobner([x^5+y^4+z^3-1,x^3+y^3+z^2-1], [x,y,z]);
|
---|
| 186 |
|
---|
| 187 | /* We can also perform Grobner basis calculations modulo prime */
|
---|
| 188 | poly_grobner([x^5+y^4+z^3-1,x^3+y^3+z^2-1], [x,y,z]), modulus=3;
|
---|
| 189 |
|
---|
| 190 | /* We can also explicitly ask for the Grobner basis to be calculated using only
|
---|
| 191 | integer coefficients. An error will result if this assertion is not satisfied. */
|
---|
| 192 | poly_grobner([x^5+y^4+z^3-1,x^3+y^3+z^2-1], [x,y,z]), poly_coefficient_ring='ring_of_integers;
|
---|
| 193 |
|
---|
| 194 | /* The following several tests demonstrate the use of jet variables useful in processing differential equations */
|
---|
| 195 |
|
---|
| 196 |
|
---|
| 197 | /* Clear some variables */
|
---|
| 198 | kill(ode,t,x,y,u,v,r);
|
---|
| 199 |
|
---|
| 200 | /* Set up dependencies */
|
---|
| 201 | depends([x,y,u,v,r],t);
|
---|
| 202 |
|
---|
| 203 | /* These are equations representing mathematical pendulum */
|
---|
| 204 | ode:[x^2+y^2-c,'diff(x,t)-u,'diff(y,t)-v,'diff(u,t)+r*x,'diff(v,t)+r*y+1];
|
---|
| 205 |
|
---|
| 206 | jet_vars(k):=apply(append,reverse(makelist(['diff(x,t,j),'diff(y,t,j),'diff(u,t,j),'diff(v,t,j),'diff(r,t,j)],j,0,k+1)));
|
---|
| 207 |
|
---|
| 208 | /* Define k-fold prolongation */
|
---|
| 209 | prolongate(k):=apply(append,makelist(diff(ode,t,j),j,0,k));
|
---|
| 210 |
|
---|
| 211 | /* Define Grobner basis of k-fold prolongation */
|
---|
| 212 | gb(k):=poly_reduced_grobner(prolongate(k),jet_vars(k));
|
---|
| 213 |
|
---|
| 214 | /* Define the l-th projection of the k-th prolongation */
|
---|
| 215 | projection(l, k):=poly_elimination_ideal(prolongate(k),5*l,jet_vars(k));
|
---|
| 216 |
|
---|
| 217 | /* Compute some projections */
|
---|
| 218 | projection(0, 0);
|
---|
| 219 | projection(1, 1);
|
---|