1 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
|
---|
2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
3 | ;;;
|
---|
4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
5 | ;;;
|
---|
6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
9 | ;;; (at your option) any later version.
|
---|
10 | ;;;
|
---|
11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | ;;; GNU General Public License for more details.
|
---|
15 | ;;;
|
---|
16 | ;;; You should have received a copy of the GNU General Public License
|
---|
17 | ;;; along with this program; if not, write to the Free Software
|
---|
18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
19 | ;;;
|
---|
20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
21 |
|
---|
22 | (in-package :grobner)
|
---|
23 |
|
---|
24 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
25 | ;;
|
---|
26 | ;; Low-level polynomial arithmetic done on
|
---|
27 | ;; lists of terms
|
---|
28 | ;;
|
---|
29 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
30 |
|
---|
31 | (defmacro termlist-lt (p) `(car ,p))
|
---|
32 | (defun termlist-lm (p) (term-monom (termlist-lt p)))
|
---|
33 | (defun termlist-lc (p) (term-coeff (termlist-lt p)))
|
---|
34 |
|
---|
35 | (define-modify-macro scalar-mul (c) coeff-mul)
|
---|
36 |
|
---|
37 | (defun scalar-times-termlist (ring c p)
|
---|
38 | "Multiply scalar C by a polynomial P. This function works
|
---|
39 | even if there are divisors of 0."
|
---|
40 | (mapcan
|
---|
41 | #'(lambda (term)
|
---|
42 | (let ((c1 (funcall (ring-mul ring) c (term-coeff term))))
|
---|
43 | (unless (funcall (ring-zerop ring) c1)
|
---|
44 | (list (make-term (term-monom term) c1)))))
|
---|
45 | p))
|
---|
46 |
|
---|
47 |
|
---|
48 | (defun term-mul (ring term1 term2)
|
---|
49 | "Returns (LIST TERM) wheter TERM is the product of the terms TERM1 TERM2,
|
---|
50 | or NIL when the product is 0. This definition takes care of divisors of 0
|
---|
51 | in the coefficient ring."
|
---|
52 | (let ((c (funcall (ring-mul ring) (term-coeff term1) (term-coeff term2))))
|
---|
53 | (unless (funcall (ring-zerop ring) c)
|
---|
54 | (list (make-term (monom-mul (term-monom term1) (term-monom term2)) c)))))
|
---|
55 |
|
---|
56 | (defun term-times-termlist (ring term f)
|
---|
57 | (declare (type ring ring))
|
---|
58 | (mapcan #'(lambda (term-f) (term-mul ring term term-f)) f))
|
---|
59 |
|
---|
60 | (defun termlist-times-term (ring f term)
|
---|
61 | (mapcan #'(lambda (term-f) (term-mul ring term-f term)) f))
|
---|
62 |
|
---|
63 | (defun monom-times-term (m term)
|
---|
64 | (make-term (monom-mul m (term-monom term)) (term-coeff term)))
|
---|
65 |
|
---|
66 | (defun monom-times-termlist (m f)
|
---|
67 | (cond
|
---|
68 | ((null f) nil)
|
---|
69 | (t
|
---|
70 | (mapcar #'(lambda (x) (monom-times-term m x)) f))))
|
---|
71 |
|
---|
72 | (defun termlist-uminus (ring f)
|
---|
73 | (mapcar #'(lambda (x)
|
---|
74 | (make-term (term-monom x) (funcall (ring-uminus ring) (term-coeff x))))
|
---|
75 | f))
|
---|
76 |
|
---|
77 | (defun termlist-add (ring p q)
|
---|
78 | (declare (type list p q))
|
---|
79 | (do (r)
|
---|
80 | ((cond
|
---|
81 | ((endp p)
|
---|
82 | (setf r (revappend r q)) t)
|
---|
83 | ((endp q)
|
---|
84 | (setf r (revappend r p)) t)
|
---|
85 | (t
|
---|
86 | (multiple-value-bind
|
---|
87 | (lm-greater lm-equal)
|
---|
88 | (monomial-order (termlist-lm p) (termlist-lm q))
|
---|
89 | (cond
|
---|
90 | (lm-equal
|
---|
91 | (let ((s (funcall (ring-add ring) (termlist-lc p) (termlist-lc q))))
|
---|
92 | (unless (funcall (ring-zerop ring) s) ;check for cancellation
|
---|
93 | (setf r (cons (make-term (termlist-lm p) s) r)))
|
---|
94 | (setf p (cdr p) q (cdr q))))
|
---|
95 | (lm-greater
|
---|
96 | (setf r (cons (car p) r)
|
---|
97 | p (cdr p)))
|
---|
98 | (t (setf r (cons (car q) r)
|
---|
99 | q (cdr q)))))
|
---|
100 | nil))
|
---|
101 | r)))
|
---|
102 |
|
---|
103 | (defun termlist-sub (ring p q)
|
---|
104 | (declare (type list p q))
|
---|
105 | (do (r)
|
---|
106 | ((cond
|
---|
107 | ((endp p)
|
---|
108 | (setf r (revappend r (termlist-uminus ring q)))
|
---|
109 | t)
|
---|
110 | ((endp q)
|
---|
111 | (setf r (revappend r p))
|
---|
112 | t)
|
---|
113 | (t
|
---|
114 | (multiple-value-bind
|
---|
115 | (mgreater mequal)
|
---|
116 | (monomial-order (termlist-lm p) (termlist-lm q))
|
---|
117 | (cond
|
---|
118 | (mequal
|
---|
119 | (let ((s (funcall (ring-sub ring) (termlist-lc p) (termlist-lc q))))
|
---|
120 | (unless (funcall (ring-zerop ring) s) ;check for cancellation
|
---|
121 | (setf r (cons (make-term (termlist-lm p) s) r)))
|
---|
122 | (setf p (cdr p) q (cdr q))))
|
---|
123 | (mgreater
|
---|
124 | (setf r (cons (car p) r)
|
---|
125 | p (cdr p)))
|
---|
126 | (t (setf r (cons (make-term (termlist-lm q) (funcall (ring-uminus ring) (termlist-lc q))) r)
|
---|
127 | q (cdr q)))))
|
---|
128 | nil))
|
---|
129 | r)))
|
---|
130 |
|
---|
131 | ;; Multiplication of polynomials
|
---|
132 | ;; Non-destructive version
|
---|
133 | (defun termlist-mul (ring p q)
|
---|
134 | (cond ((or (endp p) (endp q)) nil) ;p or q is 0 (represented by NIL)
|
---|
135 | ;; If p=p0+p1 and q=q0+q1 then pq=p0q0+p0q1+p1q
|
---|
136 | ((endp (cdr p))
|
---|
137 | (term-times-termlist ring (car p) q))
|
---|
138 | ((endp (cdr q))
|
---|
139 | (termlist-times-term ring p (car q)))
|
---|
140 | (t
|
---|
141 | (let ((head (term-mul ring (termlist-lt p) (termlist-lt q)))
|
---|
142 | (tail (termlist-add ring (term-times-termlist ring (car p) (cdr q))
|
---|
143 | (termlist-mul ring (cdr p) q))))
|
---|
144 | (cond ((null head) tail)
|
---|
145 | ((null tail) head)
|
---|
146 | (t (nconc head tail)))))))
|
---|
147 |
|
---|
148 | (defun termlist-unit (ring dimension)
|
---|
149 | (declare (fixnum dimension))
|
---|
150 | (list (make-term (make-monom dimension :initial-element 0)
|
---|
151 | (funcall (ring-unit ring)))))
|
---|
152 |
|
---|
153 | (defun termlist-expt (ring poly n &aux (dim (monom-dimension (termlist-lm poly))))
|
---|
154 | (declare (type fixnum n dim))
|
---|
155 | (cond
|
---|
156 | ((minusp n) (error "termlist-expt: Negative exponent."))
|
---|
157 | ((endp poly) (if (zerop n) (termlist-unit ring dim) nil))
|
---|
158 | (t
|
---|
159 | (do ((k 1 (ash k 1))
|
---|
160 | (q poly (termlist-mul ring q q)) ;keep squaring
|
---|
161 | (p (termlist-unit ring dim) (if (not (zerop (logand k n))) (termlist-mul ring p q) p)))
|
---|
162 | ((> k n) p)
|
---|
163 | (declare (fixnum k))))))
|
---|