;;; -*- Mode: Lisp -*- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik ;;; ;;; This program is free software; you can redistribute it and/or modify ;;; it under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 2 of the License, or ;;; (at your option) any later version. ;;; ;;; This program is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with this program; if not, write to the Free Software ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defpackage "TERM" (:use :cl :monom :ring) (:export "TERM" "TERM-EXPONENTS" "TERM-MONOM" "TERM-COEFF" "MAKE-TERM" "MAKE-TERM-VARIABLE" "TERM-MUL" "TERM-SUGAR" "TERM-DEPENDS-P" "TERM->CONS")) (in-package :term) (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0))) (defclass term (monom) ((coeff :init-arg :coeff :accessor term-coeff))) (defun make-term (&key exponents coeff) (make-instance 'term :exponents exponents :coeff coeff)) (defun make-term-variable (nvars pos &optional (power 1) (coeff 1)) "Construct a term in the polynomial ring RING[X[0],X[1],X[2],...X[NVARS-1]] over the ring RING which represents a single variable. It assumes number of variables NVARS and the variable is at position POS. Optionally, the variable may appear raised to power POWER. Optionally, the term may appear with an arbitrary coefficient, which defaults to the unit of the RING." (declare (type fixnum nvars pos)) (make-term :monom (make-monom-variable nvars pos power) :coeff coeff)) (defmethod ring-mul ((term1 term) (term2 term)) "Returns the product of the terms TERM1 and TERM2, or NIL when the product is 0. This definition takes care of divisors of 0 in the coefficient ring." (let ((c (ring-mul (term-coeff term1) (term-coeff term2)))) (unless (ring-zerop c) (make-term :monom (monom-mul (term-monom term1) (term-monom term2)) :coeff c)))) (defun term-sugar (term) (declare (type term term)) (monom-sugar (term-monom term))) ;; Does the term depend on variable K? (defun term-depends-p (term k) "Return T if the term TERM depends on variable number K." (declare (type term term) (type fixnum k)) (monom-depends-p (term-monom term) k)) (defun term->cons (term) "A human-readable representation of a term as a cons (MONOM . COEFF)." (declare (type term term)) (cons (monom->list (term-monom term)) (term-coeff term)))