1 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
|
---|
2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
3 | ;;;
|
---|
4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
5 | ;;;
|
---|
6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
9 | ;;; (at your option) any later version.
|
---|
10 | ;;;
|
---|
11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | ;;; GNU General Public License for more details.
|
---|
15 | ;;;
|
---|
16 | ;;; You should have received a copy of the GNU General Public License
|
---|
17 | ;;; along with this program; if not, write to the Free Software
|
---|
18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
19 | ;;;
|
---|
20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
21 |
|
---|
22 | (defpackage "TERM"
|
---|
23 | (:use :cl :monomial :ring)
|
---|
24 | (:export "TERM"
|
---|
25 | "TERM-EXPONENTS"
|
---|
26 | "TERM-MONOM"
|
---|
27 | "TERM-COEFF"
|
---|
28 | "MAKE-TERM"
|
---|
29 | "MAKE-TERM-VARIABLE"
|
---|
30 | "TERM-MUL"
|
---|
31 | "TERM-SUGAR"))
|
---|
32 |
|
---|
33 |
|
---|
34 | (in-package :term)
|
---|
35 |
|
---|
36 | (defstruct (term
|
---|
37 | (:constructor make-term (monom coeff))
|
---|
38 | ;;(:constructor make-term-variable)
|
---|
39 | ;;(:type list)
|
---|
40 | )
|
---|
41 | (monom nil :type monom)
|
---|
42 | (coeff nil))
|
---|
43 |
|
---|
44 |
|
---|
45 | (defun make-term-variable (ring nvars pos
|
---|
46 | &optional
|
---|
47 | (power 1)
|
---|
48 | (coeff (funcall (ring-unit ring))))
|
---|
49 | "Construct a term in the polynomial ring RING[X[0],X[1],X[2],...X[NVARS-1]]
|
---|
50 | over the ring RING which represents a single variable. It assumes
|
---|
51 | number of variables NVARS and the variable is at position
|
---|
52 | POS. Optionally, the variable may appear raised to power POWER.
|
---|
53 | Optionally, the term may appear with an arbitrary coefficient, which
|
---|
54 | defaults to the unit of the RING."
|
---|
55 | (declare (fixnum nvars pos power))
|
---|
56 | (let ((result (make-term (make-monom nvars) coeff)))
|
---|
57 | (setf (monom-elt result pos) power)
|
---|
58 | result))
|
---|
59 |
|
---|
60 | (defun term-mul (ring term1 term2)
|
---|
61 | "Returns the product of the terms TERM1 and TERM2,
|
---|
62 | or NIL when the product is 0. This definition takes care of divisors of 0
|
---|
63 | in the coefficient ring."
|
---|
64 | (let ((c (funcall (ring-mul ring) (term-coeff term1) (term-coeff term2))))
|
---|
65 | (unless (funcall (ring-zerop ring) c)
|
---|
66 | (make-term (monom-mul (term-monom term1) (term-monom term2)) c))))
|
---|
67 |
|
---|
68 | (defun term-sugar (term)
|
---|
69 | (monom-sugar (term-monom term)))
|
---|