| 1 | ;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- | 
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 3 | ;;; | 
|---|
| 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
| 5 | ;;; | 
|---|
| 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
| 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
| 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
| 9 | ;;;  (at your option) any later version. | 
|---|
| 10 | ;;; | 
|---|
| 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
| 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | ;;;  GNU General Public License for more details. | 
|---|
| 15 | ;;; | 
|---|
| 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
| 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
| 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
| 19 | ;;; | 
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 21 |  | 
|---|
| 22 | (defpackage "TERM" | 
|---|
| 23 | (:use :cl :monomial :ring) | 
|---|
| 24 | (:export "TERM" | 
|---|
| 25 | "TERM-EXPONENTS" | 
|---|
| 26 | "TERM-COEFF" | 
|---|
| 27 | "MAKE-TERM" | 
|---|
| 28 | "MAKE-TERM-VARIABLE" | 
|---|
| 29 | "TERM-MUL" | 
|---|
| 30 | "TERM-SUGAR")) | 
|---|
| 31 |  | 
|---|
| 32 |  | 
|---|
| 33 | (in-package :term) | 
|---|
| 34 |  | 
|---|
| 35 | (defstruct (term | 
|---|
| 36 | (:include monom) | 
|---|
| 37 | ;; BOA constructor. TODO: avoid code duplication with MONOM? | 
|---|
| 38 | (:constructor make-term (dimension | 
|---|
| 39 | &key | 
|---|
| 40 | (monom nil monom-supplied-p) | 
|---|
| 41 | (initial-exponents #() initial-exponents-supplied-p) | 
|---|
| 42 | (initial-exponent  #() initial-exponent-supplied-p) | 
|---|
| 43 | (exponents (cond | 
|---|
| 44 | (monom-supplied-p (monom-exponents monom)) | 
|---|
| 45 | ;; when exponents are supplied | 
|---|
| 46 | (initial-exponents-supplied-p | 
|---|
| 47 | (make-array (list dimension) :initial-contents initial-exponents | 
|---|
| 48 | :element-type 'exponent)) | 
|---|
| 49 | ;; when all exponents are to be identical | 
|---|
| 50 | (initial-exponent-supplied-p | 
|---|
| 51 | (make-array (list dimension) :initial-element initial-exponent | 
|---|
| 52 | :element-type 'exponent)) | 
|---|
| 53 | ;; otherwise, all exponents are zero | 
|---|
| 54 | (t (make-array (list dimension) :element-type 'exponent :initial-element 0)))) | 
|---|
| 55 | (ring *ring-of-integers*) | 
|---|
| 56 | (coeff (funcall (ring-unit ring))))) | 
|---|
| 57 | ;;(:constructor make-term-variable) | 
|---|
| 58 | ;;(:type list) | 
|---|
| 59 | ) | 
|---|
| 60 | (coeff nil)) | 
|---|
| 61 |  | 
|---|
| 62 |  | 
|---|
| 63 | (defun make-term-variable (ring nvars pos | 
|---|
| 64 | &optional | 
|---|
| 65 | (power 1) | 
|---|
| 66 | (coeff (funcall (ring-unit ring)))) | 
|---|
| 67 | "Construct a term in the polynomial ring RING[X[0],X[1],X[2],...X[NVARS-1]] | 
|---|
| 68 | over the ring RING which represents a single variable. It assumes | 
|---|
| 69 | number of variables NVARS and the variable is at position | 
|---|
| 70 | POS. Optionally, the variable may appear raised to power POWER. | 
|---|
| 71 | Optionally, the term may appear with an arbitrary coefficient, which | 
|---|
| 72 | defaults to the unit of the RING." | 
|---|
| 73 | (declare (fixnum nvars pos power)) | 
|---|
| 74 | (let ((result (make-term nvars :coeff coeff))) | 
|---|
| 75 | (setf (monom-elt result pos) power) | 
|---|
| 76 | result)) | 
|---|
| 77 |  | 
|---|
| 78 | (defun term-mul (ring term1 term2) | 
|---|
| 79 | "Returns the product of the terms TERM1 and TERM2, | 
|---|
| 80 | or NIL when the product is 0. This definition takes care of divisors of 0 | 
|---|
| 81 | in the coefficient ring." | 
|---|
| 82 | (let ((c (funcall (ring-mul ring) (term-coeff term1) (term-coeff term2)))) | 
|---|
| 83 | (unless (funcall (ring-zerop ring) c) | 
|---|
| 84 | (make-term (monom-dimension term1) | 
|---|
| 85 | :initial-exponents (monom-exponents (monom-mul term1 term2)) | 
|---|
| 86 | :coeff c)))) | 
|---|
| 87 |  | 
|---|
| 88 | (defun term-sugar (term) | 
|---|
| 89 | (monom-sugar term)) | 
|---|