[78] | 1 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
|
---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 3 | ;;;
|
---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
| 5 | ;;;
|
---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
| 9 | ;;; (at your option) any later version.
|
---|
| 10 | ;;;
|
---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | ;;; GNU General Public License for more details.
|
---|
| 15 | ;;;
|
---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 19 | ;;;
|
---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 21 |
|
---|
[397] | 22 | (defpackage "TERM"
|
---|
[410] | 23 | (:use :cl :monomial :ring)
|
---|
[435] | 24 | (:export "TERM"
|
---|
[776] | 25 | "TERM-EXPONENTS"
|
---|
[435] | 26 | "TERM-COEFF"
|
---|
[402] | 27 | "MAKE-TERM"
|
---|
[403] | 28 | "MAKE-TERM-VARIABLE"
|
---|
| 29 | "TERM-MUL"
|
---|
[402] | 30 | "TERM-SUGAR"))
|
---|
[78] | 31 |
|
---|
[142] | 32 |
|
---|
[420] | 33 | (in-package :term)
|
---|
| 34 |
|
---|
[752] | 35 | (defstruct (term
|
---|
[758] | 36 | (:include monom)
|
---|
[772] | 37 | ;; BOA constructor. TODO: avoid code duplication with MONOM?
|
---|
[773] | 38 | (:constructor make-term (dimension
|
---|
| 39 | &key
|
---|
| 40 | (initial-exponents #() initial-exponents-supplied-p)
|
---|
| 41 | (initial-exponent #() initial-exponent-supplied-p)
|
---|
| 42 | (exponents (cond
|
---|
| 43 | ;; when exponents are supplied
|
---|
| 44 | (initial-exponents-supplied-p
|
---|
| 45 | (make-array (list dimension) :initial-contents initial-exponents
|
---|
| 46 | :element-type 'exponent))
|
---|
| 47 | ;; when all exponents are to be identical
|
---|
| 48 | (initial-exponent-supplied-p
|
---|
| 49 | (make-array (list dimension) :initial-element initial-exponent
|
---|
| 50 | :element-type 'exponent))
|
---|
| 51 | ;; otherwise, all exponents are zero
|
---|
| 52 | (t (make-array (list dimension) :element-type 'exponent :initial-element 0))))
|
---|
[777] | 53 | (ring *ring-of-integers*)
|
---|
[778] | 54 | (coeff (funcall (ring-unit ring)))))
|
---|
[758] | 55 | ;;(:constructor make-term-variable)
|
---|
| 56 | ;;(:type list)
|
---|
[770] | 57 | )
|
---|
[752] | 58 | (coeff nil))
|
---|
[766] | 59 |
|
---|
[772] | 60 |
|
---|
[51] | 61 | (defun make-term-variable (ring nvars pos
|
---|
| 62 | &optional
|
---|
| 63 | (power 1)
|
---|
[774] | 64 | (coeff (funcall (ring-unit ring))))
|
---|
[400] | 65 | "Construct a term in the polynomial ring RING[X[0],X[1],X[2],...X[NVARS-1]]
|
---|
[399] | 66 | over the ring RING which represents a single variable. It assumes
|
---|
| 67 | number of variables NVARS and the variable is at position
|
---|
| 68 | POS. Optionally, the variable may appear raised to power POWER.
|
---|
| 69 | Optionally, the term may appear with an arbitrary coefficient, which
|
---|
| 70 | defaults to the unit of the RING."
|
---|
[51] | 71 | (declare (fixnum nvars pos power))
|
---|
[775] | 72 | (let ((result (make-term nvars :coeff coeff)))
|
---|
[774] | 73 | (setf (monom-elt result pos) power)
|
---|
| 74 | result))
|
---|
[51] | 75 |
|
---|
[377] | 76 | (defun term-mul (ring term1 term2)
|
---|
| 77 | "Returns the product of the terms TERM1 and TERM2,
|
---|
| 78 | or NIL when the product is 0. This definition takes care of divisors of 0
|
---|
| 79 | in the coefficient ring."
|
---|
| 80 | (let ((c (funcall (ring-mul ring) (term-coeff term1) (term-coeff term2))))
|
---|
| 81 | (unless (funcall (ring-zerop ring) c)
|
---|
[774] | 82 | (make-term (+ (monom-dimension term1) (monom-dimension term2))
|
---|
| 83 | :initial-exponents (monom-exponents (monom-mul term1 term2))
|
---|
| 84 | :coeff c))))
|
---|
[403] | 85 |
|
---|
| 86 | (defun term-sugar (term)
|
---|
[771] | 87 | (monom-sugar term))
|
---|