| 1 | ;;; -*-  Mode: Lisp -*- 
 | 
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
| 3 | ;;;                                                                              
 | 
|---|
| 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>          
 | 
|---|
| 5 | ;;;                                                                              
 | 
|---|
| 6 | ;;;  This program is free software; you can redistribute it and/or modify        
 | 
|---|
| 7 | ;;;  it under the terms of the GNU General Public License as published by        
 | 
|---|
| 8 | ;;;  the Free Software Foundation; either version 2 of the License, or           
 | 
|---|
| 9 | ;;;  (at your option) any later version.                                         
 | 
|---|
| 10 | ;;;                                                                              
 | 
|---|
| 11 | ;;;  This program is distributed in the hope that it will be useful,             
 | 
|---|
| 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of              
 | 
|---|
| 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               
 | 
|---|
| 14 | ;;;  GNU General Public License for more details.                                
 | 
|---|
| 15 | ;;;                                                                              
 | 
|---|
| 16 | ;;;  You should have received a copy of the GNU General Public License           
 | 
|---|
| 17 | ;;;  along with this program; if not, write to the Free Software                 
 | 
|---|
| 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  
 | 
|---|
| 19 | ;;;                                                                              
 | 
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
| 21 | 
 | 
|---|
| 22 | (defpackage "SYMBOLIC-POLYNOMIAL"
 | 
|---|
| 23 |   (:use :cl :utils :ring :monom :order :term :polynomial :infix)
 | 
|---|
| 24 |   (:export "SYMBOLIC-POLY")
 | 
|---|
| 25 |   (:documentation "Implements symbolic polynomials. A symbolic
 | 
|---|
| 26 | polynomial is and object which uses symbolic variables for reading and
 | 
|---|
| 27 | printing in standard human-readable (infix) form."))
 | 
|---|
| 28 | 
 | 
|---|
| 29 | (in-package :symbolic-polynomial)
 | 
|---|
| 30 | 
 | 
|---|
| 31 | (defclass symbolic-poly (poly)
 | 
|---|
| 32 |   ((vars :initform nil 
 | 
|---|
| 33 |          :initarg :vars 
 | 
|---|
| 34 |          :accessor symbolic-poly-vars)
 | 
|---|
| 35 |    )
 | 
|---|
| 36 |   (:default-initargs :termlist nil :vars nil))
 | 
|---|
| 37 | 
 | 
|---|
| 38 | (defmethod print-object ((self symbolic-poly) stream)
 | 
|---|
| 39 |   (print-unreadable-object (self stream :type t :identity t)
 | 
|---|
| 40 |     (with-accessors ((dimension poly-dimension)
 | 
|---|
| 41 |                      (termlist poly-termlist) 
 | 
|---|
| 42 |                      (order poly-term-order)
 | 
|---|
| 43 |                      (vars symbolic-poly-vars))
 | 
|---|
| 44 |         self
 | 
|---|
| 45 |       (format stream "DIMENSION=~A TERMLIST=~A ORDER=~A VARS=~A" 
 | 
|---|
| 46 |               dimension termlist order vars))))
 | 
|---|
| 47 | 
 | 
|---|
| 48 | 
 | 
|---|
| 49 | (defmethod r-equalp ((self symbolic-poly) (other symbolic-poly))
 | 
|---|
| 50 |   (when (r-equalp (symbolic-poly-vars self) (symbolic-poly-vars other))
 | 
|---|
| 51 |     (call-next-method)))
 | 
|---|
| 52 | 
 | 
|---|
| 53 | (defmethod update-instance-for-different-class :after ((old poly) (new  symbolic-poly) &key)
 | 
|---|
| 54 |   (assert (= (length (symbolic-poly-vars new) (poly-dimension new)))))
 | 
|---|
| 55 | 
 | 
|---|
| 56 | 
 | 
|---|
| 57 | #|
 | 
|---|
| 58 | 
 | 
|---|
| 59 | (defun coerce-coeff (ring expr vars)
 | 
|---|
| 60 |   "Coerce an element of the coefficient ring to a constant polynomial."
 | 
|---|
| 61 |   (declare (type ring ring))
 | 
|---|
| 62 |   (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
 | 
|---|
| 63 |                                             :coeff (funcall (ring-parse ring) expr)))
 | 
|---|
| 64 |                            0))
 | 
|---|
| 65 | 
 | 
|---|
| 66 | (defun poly-eval (expr vars 
 | 
|---|
| 67 |                   &optional 
 | 
|---|
| 68 |                     (order #'lex>)
 | 
|---|
| 69 |                     (list-marker :[))
 | 
|---|
| 70 |   "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
 | 
|---|
| 71 | variables VARS. Return the resulting polynomial or list of
 | 
|---|
| 72 | polynomials.  Standard arithmetical operators in form EXPR are
 | 
|---|
| 73 | replaced with their analogues in the ring of polynomials, and the
 | 
|---|
| 74 | resulting expression is evaluated, resulting in a polynomial or a list
 | 
|---|
| 75 | of polynomials in internal form. A similar operation in another computer
 | 
|---|
| 76 | algebra system could be called 'expand' or so."
 | 
|---|
| 77 |   (declare (type ring ring))
 | 
|---|
| 78 |   (labels ((p-eval (arg) (poly-eval arg vars ring order))
 | 
|---|
| 79 |            (p-eval-scalar (arg) (poly-eval-scalar arg))
 | 
|---|
| 80 |            (p-eval-list (args) (mapcar #'p-eval args))
 | 
|---|
| 81 |            (p-add (x y) (poly-add ring-and-order x y)))
 | 
|---|
| 82 |     (cond
 | 
|---|
| 83 |       ((null expr) (error "Empty expression"))
 | 
|---|
| 84 |       ((eql expr 0) (make-poly-zero))
 | 
|---|
| 85 |       ((member expr vars :test #'equalp)
 | 
|---|
| 86 |        (let ((pos (position expr vars :test #'equalp)))
 | 
|---|
| 87 |          (make-poly-variable ring (length vars) pos)))
 | 
|---|
| 88 |       ((atom expr)
 | 
|---|
| 89 |        (coerce-coeff ring expr vars))
 | 
|---|
| 90 |       ((eq (car expr) list-marker)
 | 
|---|
| 91 |        (cons list-marker (p-eval-list (cdr expr))))
 | 
|---|
| 92 |       (t
 | 
|---|
| 93 |        (case (car expr)
 | 
|---|
| 94 |          (+ (reduce #'p-add (p-eval-list (cdr expr))))
 | 
|---|
| 95 |          (- (case (length expr)
 | 
|---|
| 96 |               (1 (make-poly-zero))
 | 
|---|
| 97 |               (2 (poly-uminus ring (p-eval (cadr expr))))
 | 
|---|
| 98 |               (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
 | 
|---|
| 99 |               (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
 | 
|---|
| 100 |                                    (reduce #'p-add (p-eval-list (cddr expr)))))))
 | 
|---|
| 101 |          (*
 | 
|---|
| 102 |           (if (endp (cddr expr))                ;unary
 | 
|---|
| 103 |               (p-eval (cdr expr))
 | 
|---|
| 104 |               (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
 | 
|---|
| 105 |          (/ 
 | 
|---|
| 106 |           ;; A polynomial can be divided by a scalar
 | 
|---|
| 107 |           (cond 
 | 
|---|
| 108 |             ((endp (cddr expr))
 | 
|---|
| 109 |              ;; A special case (/ ?), the inverse
 | 
|---|
| 110 |              (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
 | 
|---|
| 111 |             (t
 | 
|---|
| 112 |              (let ((num (p-eval (cadr expr)))
 | 
|---|
| 113 |                    (denom-inverse (apply (ring-div ring)
 | 
|---|
| 114 |                                          (cons (funcall (ring-unit ring)) 
 | 
|---|
| 115 |                                                (mapcar #'p-eval-scalar (cddr expr))))))
 | 
|---|
| 116 |                (scalar-times-poly ring denom-inverse num)))))
 | 
|---|
| 117 |          (expt
 | 
|---|
| 118 |           (cond
 | 
|---|
| 119 |             ((member (cadr expr) vars :test #'equalp)
 | 
|---|
| 120 |              ;;Special handling of (expt var pow)
 | 
|---|
| 121 |              (let ((pos (position (cadr expr) vars :test #'equalp)))
 | 
|---|
| 122 |                (make-poly-variable ring (length vars) pos (caddr expr))))
 | 
|---|
| 123 |             ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
 | 
|---|
| 124 |              ;; Negative power means division in coefficient ring
 | 
|---|
| 125 |              ;; Non-integer power means non-polynomial coefficient
 | 
|---|
| 126 |              (coerce-coeff ring expr vars))
 | 
|---|
| 127 |             (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
 | 
|---|
| 128 |          (otherwise
 | 
|---|
| 129 |           (coerce-coeff ring expr vars)))))))
 | 
|---|
| 130 | 
 | 
|---|
| 131 | (defun poly-eval-scalar (expr 
 | 
|---|
| 132 |                          &optional
 | 
|---|
| 133 |                            (ring +ring-of-integers+)
 | 
|---|
| 134 |                          &aux 
 | 
|---|
| 135 |                            (order #'lex>))
 | 
|---|
| 136 |   "Evaluate a scalar expression EXPR in ring RING."
 | 
|---|
| 137 |   (declare (type ring ring))
 | 
|---|
| 138 |   (poly-lc (poly-eval expr nil ring order)))
 | 
|---|
| 139 | 
 | 
|---|
| 140 | 
 | 
|---|
| 141 | (defun read-infix-form (&key (stream t))
 | 
|---|
| 142 |   "Parser of infix expressions with integer/rational coefficients
 | 
|---|
| 143 | The parser will recognize two kinds of polynomial expressions:
 | 
|---|
| 144 | 
 | 
|---|
| 145 | - polynomials in fully expanded forms with coefficients
 | 
|---|
| 146 |   written in front of symbolic expressions; constants can be optionally
 | 
|---|
| 147 |   enclosed in (); for example, the infix form
 | 
|---|
| 148 |         X^2-Y^2+(-4/3)*U^2*W^3-5
 | 
|---|
| 149 |   parses to
 | 
|---|
| 150 |         (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
 | 
|---|
| 151 | 
 | 
|---|
| 152 | - lists of polynomials; for example
 | 
|---|
| 153 |         [X-Y, X^2+3*Z]          
 | 
|---|
| 154 |   parses to
 | 
|---|
| 155 |           (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
 | 
|---|
| 156 |   where the first symbol [ marks a list of polynomials.
 | 
|---|
| 157 | 
 | 
|---|
| 158 | -other infix expressions, for example
 | 
|---|
| 159 |         [(X-Y)*(X+Y)/Z,(X+1)^2]
 | 
|---|
| 160 | parses to:
 | 
|---|
| 161 |         (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
 | 
|---|
| 162 | Currently this function is implemented using M. Kantrowitz's INFIX package."
 | 
|---|
| 163 |   (read-from-string
 | 
|---|
| 164 |    (concatenate 'string
 | 
|---|
| 165 |                 "#I(" 
 | 
|---|
| 166 |                 (with-output-to-string (s)
 | 
|---|
| 167 |                   (loop
 | 
|---|
| 168 |                      (multiple-value-bind (line eof)
 | 
|---|
| 169 |                          (read-line stream t)
 | 
|---|
| 170 |                        (format s "~A" line)
 | 
|---|
| 171 |                        (when eof (return)))))
 | 
|---|
| 172 |                 ")")))
 | 
|---|
| 173 | 
 | 
|---|
| 174 | (defun read-poly (vars &key
 | 
|---|
| 175 |                          (stream t) 
 | 
|---|
| 176 |                          (ring +ring-of-integers+) 
 | 
|---|
| 177 |                          (order #'lex>))
 | 
|---|
| 178 |   "Reads an expression in prefix form from a stream STREAM.
 | 
|---|
| 179 | The expression read from the strem should represent a polynomial or a
 | 
|---|
| 180 | list of polynomials in variables VARS, over the ring RING.  The
 | 
|---|
| 181 | polynomial or list of polynomials is returned, with terms in each
 | 
|---|
| 182 | polynomial ordered according to monomial order ORDER."
 | 
|---|
| 183 |   (poly-eval (read-infix-form :stream stream) vars ring order))
 | 
|---|
| 184 | 
 | 
|---|
| 185 | (defun string->poly (str vars 
 | 
|---|
| 186 |                      &optional
 | 
|---|
| 187 |                        (ring +ring-of-integers+) 
 | 
|---|
| 188 |                        (order #'lex>))
 | 
|---|
| 189 |   "Converts a string STR to a polynomial in variables VARS."
 | 
|---|
| 190 |   (with-input-from-string (s str)
 | 
|---|
| 191 |     (read-poly vars :stream s :ring ring :order order)))
 | 
|---|
| 192 | 
 | 
|---|
| 193 | (defun poly->alist (p)
 | 
|---|
| 194 |   "Convert a polynomial P to an association list. Thus, the format of the
 | 
|---|
| 195 | returned value is  ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
 | 
|---|
| 196 | MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
 | 
|---|
| 197 | corresponding coefficient in the ring."
 | 
|---|
| 198 |   (cond
 | 
|---|
| 199 |     ((poly-p p)
 | 
|---|
| 200 |      (mapcar #'term->cons (poly-termlist p)))
 | 
|---|
| 201 |     ((and (consp p) (eq (car p) :[))
 | 
|---|
| 202 |      (cons :[ (mapcar #'poly->alist (cdr p))))))
 | 
|---|
| 203 | 
 | 
|---|
| 204 | (defun string->alist (str vars
 | 
|---|
| 205 |                       &optional
 | 
|---|
| 206 |                         (ring +ring-of-integers+) 
 | 
|---|
| 207 |                         (order #'lex>))
 | 
|---|
| 208 |   "Convert a string STR representing a polynomial or polynomial list to
 | 
|---|
| 209 | an association list (... (MONOM . COEFF) ...)."
 | 
|---|
| 210 |   (poly->alist (string->poly str vars ring order)))
 | 
|---|
| 211 | 
 | 
|---|
| 212 | (defun poly-equal-no-sugar-p (p q)
 | 
|---|
| 213 |   "Compare polynomials for equality, ignoring sugar."
 | 
|---|
| 214 |   (declare (type poly p q))
 | 
|---|
| 215 |   (equalp (poly-termlist p) (poly-termlist q)))
 | 
|---|
| 216 | 
 | 
|---|
| 217 | (defun poly-set-equal-no-sugar-p (p q)
 | 
|---|
| 218 |   "Compare polynomial sets P and Q for equality, ignoring sugar."
 | 
|---|
| 219 |   (null (set-exclusive-or  p q :test #'poly-equal-no-sugar-p )))
 | 
|---|
| 220 | 
 | 
|---|
| 221 | (defun poly-list-equal-no-sugar-p (p q)
 | 
|---|
| 222 |   "Compare polynomial lists P and Q for equality, ignoring sugar."
 | 
|---|
| 223 |   (every #'poly-equal-no-sugar-p p q))
 | 
|---|
| 224 | 
 | 
|---|
| 225 | |#
 | 
|---|