close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/symbolic-polynomial.lisp@ 3277

Last change on this file since 3277 was 3274, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 8.3 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "SYMBOLIC-POLYNOMIAL"
23 (:use :cl :utils :ring :monom :order :term :polynomial :infix)
24 (:export "SYMBOLIC-POLY")
25 (:documentation "Implements symbolic polynomials. A symbolic
26polynomial is and object which uses symbolic variables for reading and
27printing in standard human-readable (infix) form."))
28
29(in-package :symbolic-polynomial)
30
31(defclass symbolic-poly (poly)
32 ((vars :initform nil
33 :initarg :vars
34 :accessor symbolic-poly-vars)
35 )
36 (:default-initargs :termlist nil :vars nil))
37
38(defmethod print-object ((self symbolic-poly) stream)
39 (print-unreadable-object (self stream :type t :identity t)
40 (with-accessors ((dimension poly-dimension)
41 (termlist poly-termlist)
42 (order poly-term-order)
43 (vars symbolic-poly-vars))
44 self
45 (format stream "DIMENSION=~A TERMLIST=~A ORDER=~A VARS=~A"
46 dimension termlist order vars))))
47
48
49(defmethod r-equalp ((self symbolic-poly) (other symbolic-poly))
50 (when (equalp (symbolic-poly-vars self) (symbolic-poly-vars other))
51 (call-next-method)))
52
53#|
54
55(defun coerce-coeff (ring expr vars)
56 "Coerce an element of the coefficient ring to a constant polynomial."
57 (declare (type ring ring))
58 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
59 :coeff (funcall (ring-parse ring) expr)))
60 0))
61
62(defun poly-eval (expr vars
63 &optional
64 (order #'lex>)
65 (list-marker :[))
66 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
67variables VARS. Return the resulting polynomial or list of
68polynomials. Standard arithmetical operators in form EXPR are
69replaced with their analogues in the ring of polynomials, and the
70resulting expression is evaluated, resulting in a polynomial or a list
71of polynomials in internal form. A similar operation in another computer
72algebra system could be called 'expand' or so."
73 (declare (type ring ring))
74 (labels ((p-eval (arg) (poly-eval arg vars ring order))
75 (p-eval-scalar (arg) (poly-eval-scalar arg))
76 (p-eval-list (args) (mapcar #'p-eval args))
77 (p-add (x y) (poly-add ring-and-order x y)))
78 (cond
79 ((null expr) (error "Empty expression"))
80 ((eql expr 0) (make-poly-zero))
81 ((member expr vars :test #'equalp)
82 (let ((pos (position expr vars :test #'equalp)))
83 (make-poly-variable ring (length vars) pos)))
84 ((atom expr)
85 (coerce-coeff ring expr vars))
86 ((eq (car expr) list-marker)
87 (cons list-marker (p-eval-list (cdr expr))))
88 (t
89 (case (car expr)
90 (+ (reduce #'p-add (p-eval-list (cdr expr))))
91 (- (case (length expr)
92 (1 (make-poly-zero))
93 (2 (poly-uminus ring (p-eval (cadr expr))))
94 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
95 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
96 (reduce #'p-add (p-eval-list (cddr expr)))))))
97 (*
98 (if (endp (cddr expr)) ;unary
99 (p-eval (cdr expr))
100 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
101 (/
102 ;; A polynomial can be divided by a scalar
103 (cond
104 ((endp (cddr expr))
105 ;; A special case (/ ?), the inverse
106 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
107 (t
108 (let ((num (p-eval (cadr expr)))
109 (denom-inverse (apply (ring-div ring)
110 (cons (funcall (ring-unit ring))
111 (mapcar #'p-eval-scalar (cddr expr))))))
112 (scalar-times-poly ring denom-inverse num)))))
113 (expt
114 (cond
115 ((member (cadr expr) vars :test #'equalp)
116 ;;Special handling of (expt var pow)
117 (let ((pos (position (cadr expr) vars :test #'equalp)))
118 (make-poly-variable ring (length vars) pos (caddr expr))))
119 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
120 ;; Negative power means division in coefficient ring
121 ;; Non-integer power means non-polynomial coefficient
122 (coerce-coeff ring expr vars))
123 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
124 (otherwise
125 (coerce-coeff ring expr vars)))))))
126
127(defun poly-eval-scalar (expr
128 &optional
129 (ring +ring-of-integers+)
130 &aux
131 (order #'lex>))
132 "Evaluate a scalar expression EXPR in ring RING."
133 (declare (type ring ring))
134 (poly-lc (poly-eval expr nil ring order)))
135
136
137(defun read-infix-form (&key (stream t))
138 "Parser of infix expressions with integer/rational coefficients
139The parser will recognize two kinds of polynomial expressions:
140
141- polynomials in fully expanded forms with coefficients
142 written in front of symbolic expressions; constants can be optionally
143 enclosed in (); for example, the infix form
144 X^2-Y^2+(-4/3)*U^2*W^3-5
145 parses to
146 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
147
148- lists of polynomials; for example
149 [X-Y, X^2+3*Z]
150 parses to
151 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
152 where the first symbol [ marks a list of polynomials.
153
154-other infix expressions, for example
155 [(X-Y)*(X+Y)/Z,(X+1)^2]
156parses to:
157 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
158Currently this function is implemented using M. Kantrowitz's INFIX package."
159 (read-from-string
160 (concatenate 'string
161 "#I("
162 (with-output-to-string (s)
163 (loop
164 (multiple-value-bind (line eof)
165 (read-line stream t)
166 (format s "~A" line)
167 (when eof (return)))))
168 ")")))
169
170(defun read-poly (vars &key
171 (stream t)
172 (ring +ring-of-integers+)
173 (order #'lex>))
174 "Reads an expression in prefix form from a stream STREAM.
175The expression read from the strem should represent a polynomial or a
176list of polynomials in variables VARS, over the ring RING. The
177polynomial or list of polynomials is returned, with terms in each
178polynomial ordered according to monomial order ORDER."
179 (poly-eval (read-infix-form :stream stream) vars ring order))
180
181(defun string->poly (str vars
182 &optional
183 (ring +ring-of-integers+)
184 (order #'lex>))
185 "Converts a string STR to a polynomial in variables VARS."
186 (with-input-from-string (s str)
187 (read-poly vars :stream s :ring ring :order order)))
188
189(defun poly->alist (p)
190 "Convert a polynomial P to an association list. Thus, the format of the
191returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
192MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
193corresponding coefficient in the ring."
194 (cond
195 ((poly-p p)
196 (mapcar #'term->cons (poly-termlist p)))
197 ((and (consp p) (eq (car p) :[))
198 (cons :[ (mapcar #'poly->alist (cdr p))))))
199
200(defun string->alist (str vars
201 &optional
202 (ring +ring-of-integers+)
203 (order #'lex>))
204 "Convert a string STR representing a polynomial or polynomial list to
205an association list (... (MONOM . COEFF) ...)."
206 (poly->alist (string->poly str vars ring order)))
207
208(defun poly-equal-no-sugar-p (p q)
209 "Compare polynomials for equality, ignoring sugar."
210 (declare (type poly p q))
211 (equalp (poly-termlist p) (poly-termlist q)))
212
213(defun poly-set-equal-no-sugar-p (p q)
214 "Compare polynomial sets P and Q for equality, ignoring sugar."
215 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
216
217(defun poly-list-equal-no-sugar-p (p q)
218 "Compare polynomial lists P and Q for equality, ignoring sugar."
219 (every #'poly-equal-no-sugar-p p q))
220
221|#
Note: See TracBrowser for help on using the repository browser.