| [3124] | 1 | ;;; -*-  Mode: Lisp -*- | 
|---|
|  | 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 3 | ;;; | 
|---|
|  | 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
|  | 5 | ;;; | 
|---|
|  | 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
|  | 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
|  | 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
|  | 9 | ;;;  (at your option) any later version. | 
|---|
|  | 10 | ;;; | 
|---|
|  | 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
|  | 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 14 | ;;;  GNU General Public License for more details. | 
|---|
|  | 15 | ;;; | 
|---|
|  | 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
|  | 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
|  | 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
|  | 19 | ;;; | 
|---|
|  | 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 21 |  | 
|---|
| [3230] | 22 | (defpackage "SYMBOLIC-POLYNOMIAL" | 
|---|
| [3228] | 23 | (:use :cl :utils :ring :monom :order :term :polynomial :infix) | 
|---|
| [3124] | 24 | (:export "SYMBOLIC-POLY") | 
|---|
| [3240] | 25 | (:documentation "Implements symbolic polynomials. A symbolic | 
|---|
|  | 26 | polynomial is and object which uses symbolic variables for reading and | 
|---|
|  | 27 | printing in standard human-readable (infix) form.")) | 
|---|
| [3124] | 28 |  | 
|---|
| [3231] | 29 | (in-package :symbolic-polynomial) | 
|---|
| [3124] | 30 |  | 
|---|
| [3125] | 31 | (defclass symbolic-poly (poly) | 
|---|
| [3238] | 32 | ((vars :initarg :vars :accessor symbolic-poly-vars)) | 
|---|
| [3236] | 33 | (:default-initargs :termlist nil :vars nil)) | 
|---|
| [3125] | 34 |  | 
|---|
| [3238] | 35 | (defmethod print-object ((self poly) stream) | 
|---|
| [3239] | 36 | (print-unreadable-object (self stream :type t :identity t) | 
|---|
| [3238] | 37 | (with-accessors ((termlist poly-termlist) | 
|---|
|  | 38 | (order poly-term-order) | 
|---|
|  | 39 | (vars symbolic-poly-vars)) | 
|---|
|  | 40 | self | 
|---|
|  | 41 | (format stream "TERMLIST=~A ORDER=~A VARS=~A" | 
|---|
|  | 42 | termlist order vars)))) | 
|---|
|  | 43 |  | 
|---|
|  | 44 |  | 
|---|
| [3235] | 45 | #| | 
|---|
|  | 46 |  | 
|---|
| [3124] | 47 | (defun coerce-coeff (ring expr vars) | 
|---|
|  | 48 | "Coerce an element of the coefficient ring to a constant polynomial." | 
|---|
|  | 49 | (declare (type ring ring)) | 
|---|
|  | 50 | (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars)) | 
|---|
|  | 51 | :coeff (funcall (ring-parse ring) expr))) | 
|---|
|  | 52 | 0)) | 
|---|
|  | 53 |  | 
|---|
|  | 54 | (defun poly-eval (expr vars | 
|---|
|  | 55 | &optional | 
|---|
|  | 56 | (order #'lex>) | 
|---|
| [3130] | 57 | (list-marker :[)) | 
|---|
| [3124] | 58 | "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in | 
|---|
|  | 59 | variables VARS. Return the resulting polynomial or list of | 
|---|
|  | 60 | polynomials.  Standard arithmetical operators in form EXPR are | 
|---|
|  | 61 | replaced with their analogues in the ring of polynomials, and the | 
|---|
|  | 62 | resulting expression is evaluated, resulting in a polynomial or a list | 
|---|
|  | 63 | of polynomials in internal form. A similar operation in another computer | 
|---|
|  | 64 | algebra system could be called 'expand' or so." | 
|---|
|  | 65 | (declare (type ring ring)) | 
|---|
|  | 66 | (labels ((p-eval (arg) (poly-eval arg vars ring order)) | 
|---|
|  | 67 | (p-eval-scalar (arg) (poly-eval-scalar arg)) | 
|---|
|  | 68 | (p-eval-list (args) (mapcar #'p-eval args)) | 
|---|
|  | 69 | (p-add (x y) (poly-add ring-and-order x y))) | 
|---|
|  | 70 | (cond | 
|---|
|  | 71 | ((null expr) (error "Empty expression")) | 
|---|
|  | 72 | ((eql expr 0) (make-poly-zero)) | 
|---|
|  | 73 | ((member expr vars :test #'equalp) | 
|---|
|  | 74 | (let ((pos (position expr vars :test #'equalp))) | 
|---|
|  | 75 | (make-poly-variable ring (length vars) pos))) | 
|---|
|  | 76 | ((atom expr) | 
|---|
|  | 77 | (coerce-coeff ring expr vars)) | 
|---|
|  | 78 | ((eq (car expr) list-marker) | 
|---|
|  | 79 | (cons list-marker (p-eval-list (cdr expr)))) | 
|---|
|  | 80 | (t | 
|---|
|  | 81 | (case (car expr) | 
|---|
|  | 82 | (+ (reduce #'p-add (p-eval-list (cdr expr)))) | 
|---|
|  | 83 | (- (case (length expr) | 
|---|
|  | 84 | (1 (make-poly-zero)) | 
|---|
|  | 85 | (2 (poly-uminus ring (p-eval (cadr expr)))) | 
|---|
|  | 86 | (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr)))) | 
|---|
|  | 87 | (otherwise (poly-sub ring-and-order (p-eval (cadr expr)) | 
|---|
|  | 88 | (reduce #'p-add (p-eval-list (cddr expr))))))) | 
|---|
|  | 89 | (* | 
|---|
|  | 90 | (if (endp (cddr expr))                ;unary | 
|---|
|  | 91 | (p-eval (cdr expr)) | 
|---|
|  | 92 | (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr))))) | 
|---|
|  | 93 | (/ | 
|---|
|  | 94 | ;; A polynomial can be divided by a scalar | 
|---|
|  | 95 | (cond | 
|---|
|  | 96 | ((endp (cddr expr)) | 
|---|
|  | 97 | ;; A special case (/ ?), the inverse | 
|---|
|  | 98 | (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars)) | 
|---|
|  | 99 | (t | 
|---|
|  | 100 | (let ((num (p-eval (cadr expr))) | 
|---|
|  | 101 | (denom-inverse (apply (ring-div ring) | 
|---|
|  | 102 | (cons (funcall (ring-unit ring)) | 
|---|
|  | 103 | (mapcar #'p-eval-scalar (cddr expr)))))) | 
|---|
|  | 104 | (scalar-times-poly ring denom-inverse num))))) | 
|---|
|  | 105 | (expt | 
|---|
|  | 106 | (cond | 
|---|
|  | 107 | ((member (cadr expr) vars :test #'equalp) | 
|---|
|  | 108 | ;;Special handling of (expt var pow) | 
|---|
|  | 109 | (let ((pos (position (cadr expr) vars :test #'equalp))) | 
|---|
|  | 110 | (make-poly-variable ring (length vars) pos (caddr expr)))) | 
|---|
|  | 111 | ((not (and (integerp (caddr expr)) (plusp (caddr expr)))) | 
|---|
|  | 112 | ;; Negative power means division in coefficient ring | 
|---|
|  | 113 | ;; Non-integer power means non-polynomial coefficient | 
|---|
|  | 114 | (coerce-coeff ring expr vars)) | 
|---|
|  | 115 | (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr))))) | 
|---|
|  | 116 | (otherwise | 
|---|
|  | 117 | (coerce-coeff ring expr vars))))))) | 
|---|
|  | 118 |  | 
|---|
|  | 119 | (defun poly-eval-scalar (expr | 
|---|
|  | 120 | &optional | 
|---|
|  | 121 | (ring +ring-of-integers+) | 
|---|
|  | 122 | &aux | 
|---|
|  | 123 | (order #'lex>)) | 
|---|
|  | 124 | "Evaluate a scalar expression EXPR in ring RING." | 
|---|
|  | 125 | (declare (type ring ring)) | 
|---|
|  | 126 | (poly-lc (poly-eval expr nil ring order))) | 
|---|
|  | 127 |  | 
|---|
|  | 128 |  | 
|---|
|  | 129 | (defun read-infix-form (&key (stream t)) | 
|---|
|  | 130 | "Parser of infix expressions with integer/rational coefficients | 
|---|
|  | 131 | The parser will recognize two kinds of polynomial expressions: | 
|---|
|  | 132 |  | 
|---|
|  | 133 | - polynomials in fully expanded forms with coefficients | 
|---|
|  | 134 | written in front of symbolic expressions; constants can be optionally | 
|---|
|  | 135 | enclosed in (); for example, the infix form | 
|---|
|  | 136 | X^2-Y^2+(-4/3)*U^2*W^3-5 | 
|---|
|  | 137 | parses to | 
|---|
|  | 138 | (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5)) | 
|---|
|  | 139 |  | 
|---|
|  | 140 | - lists of polynomials; for example | 
|---|
|  | 141 | [X-Y, X^2+3*Z] | 
|---|
|  | 142 | parses to | 
|---|
|  | 143 | (:[ (- X Y) (+ (EXPT X 2) (* 3 Z))) | 
|---|
|  | 144 | where the first symbol [ marks a list of polynomials. | 
|---|
|  | 145 |  | 
|---|
|  | 146 | -other infix expressions, for example | 
|---|
|  | 147 | [(X-Y)*(X+Y)/Z,(X+1)^2] | 
|---|
|  | 148 | parses to: | 
|---|
|  | 149 | (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2)) | 
|---|
|  | 150 | Currently this function is implemented using M. Kantrowitz's INFIX package." | 
|---|
|  | 151 | (read-from-string | 
|---|
|  | 152 | (concatenate 'string | 
|---|
|  | 153 | "#I(" | 
|---|
|  | 154 | (with-output-to-string (s) | 
|---|
|  | 155 | (loop | 
|---|
|  | 156 | (multiple-value-bind (line eof) | 
|---|
|  | 157 | (read-line stream t) | 
|---|
|  | 158 | (format s "~A" line) | 
|---|
|  | 159 | (when eof (return))))) | 
|---|
|  | 160 | ")"))) | 
|---|
|  | 161 |  | 
|---|
|  | 162 | (defun read-poly (vars &key | 
|---|
|  | 163 | (stream t) | 
|---|
|  | 164 | (ring +ring-of-integers+) | 
|---|
|  | 165 | (order #'lex>)) | 
|---|
|  | 166 | "Reads an expression in prefix form from a stream STREAM. | 
|---|
|  | 167 | The expression read from the strem should represent a polynomial or a | 
|---|
|  | 168 | list of polynomials in variables VARS, over the ring RING.  The | 
|---|
|  | 169 | polynomial or list of polynomials is returned, with terms in each | 
|---|
|  | 170 | polynomial ordered according to monomial order ORDER." | 
|---|
|  | 171 | (poly-eval (read-infix-form :stream stream) vars ring order)) | 
|---|
|  | 172 |  | 
|---|
|  | 173 | (defun string->poly (str vars | 
|---|
|  | 174 | &optional | 
|---|
|  | 175 | (ring +ring-of-integers+) | 
|---|
|  | 176 | (order #'lex>)) | 
|---|
|  | 177 | "Converts a string STR to a polynomial in variables VARS." | 
|---|
|  | 178 | (with-input-from-string (s str) | 
|---|
|  | 179 | (read-poly vars :stream s :ring ring :order order))) | 
|---|
|  | 180 |  | 
|---|
|  | 181 | (defun poly->alist (p) | 
|---|
|  | 182 | "Convert a polynomial P to an association list. Thus, the format of the | 
|---|
|  | 183 | returned value is  ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where | 
|---|
|  | 184 | MONOM[I] is a list of exponents in the monomial and COEFF[I] is the | 
|---|
|  | 185 | corresponding coefficient in the ring." | 
|---|
|  | 186 | (cond | 
|---|
|  | 187 | ((poly-p p) | 
|---|
|  | 188 | (mapcar #'term->cons (poly-termlist p))) | 
|---|
|  | 189 | ((and (consp p) (eq (car p) :[)) | 
|---|
|  | 190 | (cons :[ (mapcar #'poly->alist (cdr p)))))) | 
|---|
|  | 191 |  | 
|---|
|  | 192 | (defun string->alist (str vars | 
|---|
|  | 193 | &optional | 
|---|
|  | 194 | (ring +ring-of-integers+) | 
|---|
|  | 195 | (order #'lex>)) | 
|---|
|  | 196 | "Convert a string STR representing a polynomial or polynomial list to | 
|---|
|  | 197 | an association list (... (MONOM . COEFF) ...)." | 
|---|
|  | 198 | (poly->alist (string->poly str vars ring order))) | 
|---|
|  | 199 |  | 
|---|
|  | 200 | (defun poly-equal-no-sugar-p (p q) | 
|---|
|  | 201 | "Compare polynomials for equality, ignoring sugar." | 
|---|
|  | 202 | (declare (type poly p q)) | 
|---|
|  | 203 | (equalp (poly-termlist p) (poly-termlist q))) | 
|---|
|  | 204 |  | 
|---|
|  | 205 | (defun poly-set-equal-no-sugar-p (p q) | 
|---|
|  | 206 | "Compare polynomial sets P and Q for equality, ignoring sugar." | 
|---|
|  | 207 | (null (set-exclusive-or  p q :test #'poly-equal-no-sugar-p ))) | 
|---|
|  | 208 |  | 
|---|
|  | 209 | (defun poly-list-equal-no-sugar-p (p q) | 
|---|
|  | 210 | "Compare polynomial lists P and Q for equality, ignoring sugar." | 
|---|
|  | 211 | (every #'poly-equal-no-sugar-p p q)) | 
|---|
| [3235] | 212 |  | 
|---|
|  | 213 | |# | 
|---|