close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 3113

Last change on this file since 3113 was 3112, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 20.3 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :utils :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER"
27 "CHANGE-TERM-ORDER"
28 "STANDARD-EXTENSION"
29 "STANDARD-EXTENSION-1"
30 "STANDARD-SUM"
31 "SATURATION-EXTENSION"
32 "ALIST->POLY")
33 (:documentation "Implements polynomials"))
34
35(in-package :polynomial)
36
37(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
38
39(defclass poly ()
40 ((termlist :initarg :termlist :accessor poly-termlist
41 :documentation "List of terms.")
42 (order :initarg :order :accessor poly-term-order
43 :documentation "Monomial/term order."))
44 (:default-initargs :termlist nil :order #'lex>)
45 (:documentation "A polynomial with a list of terms TERMLIST, ordered
46according to term order ORDER, which defaults to LEX>."))
47
48(defmethod print-object ((self poly) stream)
49 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
50 (poly-termlist self)
51 (poly-term-order self)))
52
53(defgeneric change-term-order (self other)
54 (:documentation "Change term order of SELF to the term order of OTHER.")
55 (:method ((self poly) (other poly))
56 (unless (eq (poly-term-order self) (poly-term-order other))
57 (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
58 (poly-term-order self) (poly-term-order other)))
59 self))
60
61(defun alist->poly (alist &aux (poly (make-instance 'poly)))
62 "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...)."
63 (dolist (x alist poly)
64 (insert-item poly (make-instance 'term :exponents (car x) :coeff (cdr x)))))
65
66
67(defmethod r-equalp ((self poly) (other poly))
68 "POLY instances are R-EQUALP if they have the same
69order and if all terms are R-EQUALP."
70 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
71 (eq (poly-term-order self) (poly-term-order other))))
72
73(defmethod insert-item ((self poly) (item term))
74 (push item (poly-termlist self))
75 self)
76
77(defmethod append-item ((self poly) (item term))
78 (setf (cdr (last (poly-termlist self))) (list item))
79 self)
80
81;; Leading term
82(defgeneric leading-term (object)
83 (:method ((self poly))
84 (car (poly-termlist self)))
85 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
86
87;; Second term
88(defgeneric second-leading-term (object)
89 (:method ((self poly))
90 (cadar (poly-termlist self)))
91 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
92
93;; Leading coefficient
94(defgeneric leading-coefficient (object)
95 (:method ((self poly))
96 (r-coeff (leading-term self)))
97 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
98
99;; Second coefficient
100(defgeneric second-leading-coefficient (object)
101 (:method ((self poly))
102 (r-coeff (second-leading-term self)))
103 (:documentation "The second leading coefficient of a polynomial. It
104 signals error for a polynomial with at most one term."))
105
106;; Testing for a zero polynomial
107(defmethod r-zerop ((self poly))
108 (null (poly-termlist self)))
109
110;; The number of terms
111(defmethod r-length ((self poly))
112 (length (poly-termlist self)))
113
114(defmethod multiply-by ((self poly) (other monom))
115 (mapc #'(lambda (term) (multiply-by term other))
116 (poly-termlist self))
117 self)
118
119(defmethod multiply-by ((self poly) (other scalar))
120 (mapc #'(lambda (term) (multiply-by term other))
121 (poly-termlist self))
122 self)
123
124
125(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
126 "Return an expression which will efficiently adds/subtracts two
127polynomials, P and Q. The addition/subtraction of coefficients is
128performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
129is supplied, it is used to negate the coefficients of Q which do not
130have a corresponding coefficient in P. The code implements an
131efficient algorithm to add two polynomials represented as sorted lists
132of terms. The code destroys both arguments, reusing the terms to build
133the result."
134 `(macrolet ((lc (x) `(r-coeff (car ,x))))
135 (do ((p ,p)
136 (q ,q)
137 r)
138 ((or (endp p) (endp q))
139 ;; NOTE: R contains the result in reverse order. Can it
140 ;; be more efficient to produce the terms in correct order?
141 (unless (endp q)
142 ;; Upon subtraction, we must change the sign of
143 ;; all coefficients in q
144 ,@(when uminus-fn
145 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
146 (setf r (nreconc r q)))
147 r)
148 (multiple-value-bind
149 (greater-p equal-p)
150 (funcall ,order-fn (car p) (car q))
151 (cond
152 (greater-p
153 (rotatef (cdr p) r p)
154 )
155 (equal-p
156 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
157 (cond
158 ((r-zerop s)
159 (setf p (cdr p))
160 )
161 (t
162 (setf (lc p) s)
163 (rotatef (cdr p) r p))))
164 (setf q (cdr q))
165 )
166 (t
167 ;;Negate the term of Q if UMINUS provided, signallig
168 ;;that we are doing subtraction
169 ,(when uminus-fn
170 `(setf (lc q) (funcall ,uminus-fn (lc q))))
171 (rotatef (cdr q) r q)))))))
172
173
174(defmacro def-add/subtract-method (add/subtract-method-name
175 uminus-method-name
176 &optional
177 (doc-string nil doc-string-supplied-p))
178 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
179 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
180 ,@(when doc-string-supplied-p `(,doc-string))
181 ;; Ensure orders are compatible
182 (change-term-order other self)
183 (setf (poly-termlist self) (fast-add/subtract
184 (poly-termlist self) (poly-termlist other)
185 (poly-term-order self)
186 #',add/subtract-method-name
187 ,(when uminus-method-name `(function ,uminus-method-name))))
188 self))
189
190(eval-when (:compile-toplevel :load-toplevel :execute)
191
192 (def-add/subtract-method add-to nil
193 "Adds to polynomial SELF another polynomial OTHER.
194This operation destructively modifies both polynomials.
195The result is stored in SELF. This implementation does
196no consing, entirely reusing the sells of SELF and OTHER.")
197
198 (def-add/subtract-method subtract-from unary-minus
199 "Subtracts from polynomial SELF another polynomial OTHER.
200This operation destructively modifies both polynomials.
201The result is stored in SELF. This implementation does
202no consing, entirely reusing the sells of SELF and OTHER.")
203
204 )
205
206
207
208(defmethod unary-minus ((self poly))
209 "Destructively modifies the coefficients of the polynomial SELF,
210by changing their sign."
211 (mapc #'unary-minus (poly-termlist self))
212 self)
213
214(defun add-termlists (p q order-fn)
215 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
216 (fast-add/subtract p q order-fn #'add-to nil))
217
218(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
219 &optional (reverse-arg-order-P nil))
220 "Multiplies term TERM by a list of term, TERMLIST.
221Takes into accound divisors of zero in the ring, by
222deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
223is T, change the order of arguments; this may be important
224if we extend the package to non-commutative rings."
225 `(mapcan #'(lambda (other-term)
226 (let ((prod (r*
227 ,@(cond
228 (reverse-arg-order-p
229 `(other-term ,term))
230 (t
231 `(,term other-term))))))
232 (cond
233 ((r-zerop prod) nil)
234 (t (list prod)))))
235 ,termlist))
236
237(defun multiply-termlists (p q order-fn)
238 (cond
239 ((or (endp p) (endp q))
240 ;;p or q is 0 (represented by NIL)
241 nil)
242 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
243 ((endp (cdr p))
244 (multiply-term-by-termlist-dropping-zeros (car p) q))
245 ((endp (cdr q))
246 (multiply-term-by-termlist-dropping-zeros (car q) p t))
247 (t
248 (cons (r* (car p) (car q))
249 (add-termlists
250 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
251 (multiply-termlists (cdr p) q order-fn)
252 order-fn)))))
253
254(defmethod multiply-by ((self poly) (other poly))
255 (change-term-order other self)
256 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
257 (poly-termlist other)
258 (poly-term-order self)))
259 self)
260
261(defmethod r* ((poly1 poly) (poly2 poly))
262 "Non-destructively multiply POLY1 by POLY2."
263 (multiply-by (copy-instance POLY1) (copy-instance POLY2)))
264
265(defmethod left-tensor-product-by ((self poly) (other term))
266 (setf (poly-termlist self)
267 (mapcan #'(lambda (term)
268 (let ((prod (left-tensor-product-by term other)))
269 (cond
270 ((r-zerop prod) nil)
271 (t (list prod)))))
272 (poly-termlist self)))
273 self)
274
275(defmethod right-tensor-product-by ((self poly) (other term))
276 (setf (poly-termlist self)
277 (mapcan #'(lambda (term)
278 (let ((prod (right-tensor-product-by term other)))
279 (cond
280 ((r-zerop prod) nil)
281 (t (list prod)))))
282 (poly-termlist self)))
283 self)
284
285(defmethod left-tensor-product-by ((self poly) (other monom))
286 (setf (poly-termlist self)
287 (mapcan #'(lambda (term)
288 (let ((prod (left-tensor-product-by term other)))
289 (cond
290 ((r-zerop prod) nil)
291 (t (list prod)))))
292 (poly-termlist self)))
293 self)
294
295(defmethod right-tensor-product-by ((self poly) (other monom))
296 (setf (poly-termlist self)
297 (mapcan #'(lambda (term)
298 (let ((prod (right-tensor-product-by term other)))
299 (cond
300 ((r-zerop prod) nil)
301 (t (list prod)))))
302 (poly-termlist self)))
303 self)
304
305
306(defun standard-extension (plist &aux (k (length plist)) (i 0))
307 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
308is a list of polynomials. Destructively modifies PLIST elements."
309 (mapc #'(lambda (poly)
310 (left-tensor-product-by
311 poly
312 (prog1
313 (make-monom-variable k i)
314 (incf i))))
315 plist))
316
317(defmethod poly-dimension ((poly poly))
318 (cond ((r-zerop poly) -1)
319 (t (monom-dimension (leading-term poly)))))
320
321(defun standard-extension-1 (plist
322 &aux
323 (plist (standard-extension plist))
324 (nvars (poly-dimension (car plist))))
325 "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
326Firstly, new K variables U1, U2, ..., UK, are inserted into each
327polynomial. Subsequently, P1, P2, ..., PK are destructively modified
328tantamount to replacing PI with UI*PI-1. It assumes that all
329polynomials have the same dimension, and only the first polynomial
330is examined to determine this dimension."
331 ;; Implementation note: we use STANDARD-EXTENSION and then subtract
332 ;; 1 from each polynomial; since UI*PI has no constant term,
333 ;; we just need to append the constant term at the end
334 ;; of each termlist.
335 (flet ((subtract-1 (p)
336 (append-item p (make-instance 'term :coeff -1 :dimension nvars))))
337 (setf plist (mapc #'subtract-1 plist)))
338 plist)
339
340
341(defun standard-sum (plist
342 &aux
343 (plist (standard-extension plist))
344 (nvars (poly-dimension (car plist))))
345 "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
346Firstly, new K variables, U1, U2, ..., UK, are inserted into each
347polynomial. Subsequently, P1, P2, ..., PK are destructively modified
348tantamount to replacing PI with UI*PI, and the resulting polynomials
349are added. It should be noted that the term order is not modified,
350which is equivalent to using a lexicographic order on the first K
351variables."
352 (flet ((subtract-1 (p)
353 (append-item p (make-instance 'term :coeff -1 :dimension nvars))))
354 (subtract-1
355 (make-instance
356 'poly
357 :termlist (apply #'nconc (mapcon #'poly-termlist plist))))))
358
359#|
360
361
362
363(defun saturation-extension-1 (ring f p)
364 "Calculate [F, U*P-1]. It destructively modifies F."
365 (declare (type ring ring))
366 (polysaturation-extension ring f (list p)))
367
368;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
369;;
370;; Evaluation of polynomial (prefix) expressions
371;;
372;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
373
374(defun coerce-coeff (ring expr vars)
375 "Coerce an element of the coefficient ring to a constant polynomial."
376 ;; Modular arithmetic handler by rat
377 (declare (type ring ring))
378 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
379 :coeff (funcall (ring-parse ring) expr)))
380 0))
381
382(defun poly-eval (expr vars
383 &optional
384 (ring +ring-of-integers+)
385 (order #'lex>)
386 (list-marker :[)
387 &aux
388 (ring-and-order (make-ring-and-order :ring ring :order order)))
389 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
390variables VARS. Return the resulting polynomial or list of
391polynomials. Standard arithmetical operators in form EXPR are
392replaced with their analogues in the ring of polynomials, and the
393resulting expression is evaluated, resulting in a polynomial or a list
394of polynomials in internal form. A similar operation in another computer
395algebra system could be called 'expand' or so."
396 (declare (type ring ring))
397 (labels ((p-eval (arg) (poly-eval arg vars ring order))
398 (p-eval-scalar (arg) (poly-eval-scalar arg))
399 (p-eval-list (args) (mapcar #'p-eval args))
400 (p-add (x y) (poly-add ring-and-order x y)))
401 (cond
402 ((null expr) (error "Empty expression"))
403 ((eql expr 0) (make-poly-zero))
404 ((member expr vars :test #'equalp)
405 (let ((pos (position expr vars :test #'equalp)))
406 (make-poly-variable ring (length vars) pos)))
407 ((atom expr)
408 (coerce-coeff ring expr vars))
409 ((eq (car expr) list-marker)
410 (cons list-marker (p-eval-list (cdr expr))))
411 (t
412 (case (car expr)
413 (+ (reduce #'p-add (p-eval-list (cdr expr))))
414 (- (case (length expr)
415 (1 (make-poly-zero))
416 (2 (poly-uminus ring (p-eval (cadr expr))))
417 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
418 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
419 (reduce #'p-add (p-eval-list (cddr expr)))))))
420 (*
421 (if (endp (cddr expr)) ;unary
422 (p-eval (cdr expr))
423 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
424 (/
425 ;; A polynomial can be divided by a scalar
426 (cond
427 ((endp (cddr expr))
428 ;; A special case (/ ?), the inverse
429 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
430 (t
431 (let ((num (p-eval (cadr expr)))
432 (denom-inverse (apply (ring-div ring)
433 (cons (funcall (ring-unit ring))
434 (mapcar #'p-eval-scalar (cddr expr))))))
435 (scalar-times-poly ring denom-inverse num)))))
436 (expt
437 (cond
438 ((member (cadr expr) vars :test #'equalp)
439 ;;Special handling of (expt var pow)
440 (let ((pos (position (cadr expr) vars :test #'equalp)))
441 (make-poly-variable ring (length vars) pos (caddr expr))))
442 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
443 ;; Negative power means division in coefficient ring
444 ;; Non-integer power means non-polynomial coefficient
445 (coerce-coeff ring expr vars))
446 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
447 (otherwise
448 (coerce-coeff ring expr vars)))))))
449
450(defun poly-eval-scalar (expr
451 &optional
452 (ring +ring-of-integers+)
453 &aux
454 (order #'lex>))
455 "Evaluate a scalar expression EXPR in ring RING."
456 (declare (type ring ring))
457 (poly-lc (poly-eval expr nil ring order)))
458
459(defun spoly (ring-and-order f g
460 &aux
461 (ring (ro-ring ring-and-order)))
462 "It yields the S-polynomial of polynomials F and G."
463 (declare (type ring-and-order ring-and-order) (type poly f g))
464 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
465 (mf (monom-div lcm (poly-lm f)))
466 (mg (monom-div lcm (poly-lm g))))
467 (declare (type monom mf mg))
468 (multiple-value-bind (c cf cg)
469 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
470 (declare (ignore c))
471 (poly-sub
472 ring-and-order
473 (scalar-times-poly ring cg (monom-times-poly mf f))
474 (scalar-times-poly ring cf (monom-times-poly mg g))))))
475
476
477(defun poly-primitive-part (ring p)
478 "Divide polynomial P with integer coefficients by gcd of its
479coefficients and return the result."
480 (declare (type ring ring) (type poly p))
481 (if (poly-zerop p)
482 (values p 1)
483 (let ((c (poly-content ring p)))
484 (values (make-poly-from-termlist
485 (mapcar
486 #'(lambda (x)
487 (make-term :monom (term-monom x)
488 :coeff (funcall (ring-div ring) (term-coeff x) c)))
489 (poly-termlist p))
490 (poly-sugar p))
491 c))))
492
493(defun poly-content (ring p)
494 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
495to compute the greatest common divisor."
496 (declare (type ring ring) (type poly p))
497 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
498
499(defun read-infix-form (&key (stream t))
500 "Parser of infix expressions with integer/rational coefficients
501The parser will recognize two kinds of polynomial expressions:
502
503- polynomials in fully expanded forms with coefficients
504 written in front of symbolic expressions; constants can be optionally
505 enclosed in (); for example, the infix form
506 X^2-Y^2+(-4/3)*U^2*W^3-5
507 parses to
508 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
509
510- lists of polynomials; for example
511 [X-Y, X^2+3*Z]
512 parses to
513 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
514 where the first symbol [ marks a list of polynomials.
515
516-other infix expressions, for example
517 [(X-Y)*(X+Y)/Z,(X+1)^2]
518parses to:
519 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
520Currently this function is implemented using M. Kantrowitz's INFIX package."
521 (read-from-string
522 (concatenate 'string
523 "#I("
524 (with-output-to-string (s)
525 (loop
526 (multiple-value-bind (line eof)
527 (read-line stream t)
528 (format s "~A" line)
529 (when eof (return)))))
530 ")")))
531
532(defun read-poly (vars &key
533 (stream t)
534 (ring +ring-of-integers+)
535 (order #'lex>))
536 "Reads an expression in prefix form from a stream STREAM.
537The expression read from the strem should represent a polynomial or a
538list of polynomials in variables VARS, over the ring RING. The
539polynomial or list of polynomials is returned, with terms in each
540polynomial ordered according to monomial order ORDER."
541 (poly-eval (read-infix-form :stream stream) vars ring order))
542
543(defun string->poly (str vars
544 &optional
545 (ring +ring-of-integers+)
546 (order #'lex>))
547 "Converts a string STR to a polynomial in variables VARS."
548 (with-input-from-string (s str)
549 (read-poly vars :stream s :ring ring :order order)))
550
551(defun poly->alist (p)
552 "Convert a polynomial P to an association list. Thus, the format of the
553returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
554MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
555corresponding coefficient in the ring."
556 (cond
557 ((poly-p p)
558 (mapcar #'term->cons (poly-termlist p)))
559 ((and (consp p) (eq (car p) :[))
560 (cons :[ (mapcar #'poly->alist (cdr p))))))
561
562(defun string->alist (str vars
563 &optional
564 (ring +ring-of-integers+)
565 (order #'lex>))
566 "Convert a string STR representing a polynomial or polynomial list to
567an association list (... (MONOM . COEFF) ...)."
568 (poly->alist (string->poly str vars ring order)))
569
570(defun poly-equal-no-sugar-p (p q)
571 "Compare polynomials for equality, ignoring sugar."
572 (declare (type poly p q))
573 (equalp (poly-termlist p) (poly-termlist q)))
574
575(defun poly-set-equal-no-sugar-p (p q)
576 "Compare polynomial sets P and Q for equality, ignoring sugar."
577 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
578
579(defun poly-list-equal-no-sugar-p (p q)
580 "Compare polynomial lists P and Q for equality, ignoring sugar."
581 (every #'poly-equal-no-sugar-p p q))
582|#
Note: See TracBrowser for help on using the repository browser.