| 1 | ;;; -*-  Mode: Lisp -*- 
 | 
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
| 3 | ;;;                                                                              
 | 
|---|
| 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>          
 | 
|---|
| 5 | ;;;                                                                              
 | 
|---|
| 6 | ;;;  This program is free software; you can redistribute it and/or modify        
 | 
|---|
| 7 | ;;;  it under the terms of the GNU General Public License as published by        
 | 
|---|
| 8 | ;;;  the Free Software Foundation; either version 2 of the License, or           
 | 
|---|
| 9 | ;;;  (at your option) any later version.                                         
 | 
|---|
| 10 | ;;;                                                                              
 | 
|---|
| 11 | ;;;  This program is distributed in the hope that it will be useful,             
 | 
|---|
| 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of              
 | 
|---|
| 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               
 | 
|---|
| 14 | ;;;  GNU General Public License for more details.                                
 | 
|---|
| 15 | ;;;                                                                              
 | 
|---|
| 16 | ;;;  You should have received a copy of the GNU General Public License           
 | 
|---|
| 17 | ;;;  along with this program; if not, write to the Free Software                 
 | 
|---|
| 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  
 | 
|---|
| 19 | ;;;                                                                              
 | 
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
| 21 | 
 | 
|---|
| 22 | (defpackage "POLYNOMIAL"
 | 
|---|
| 23 |   (:use :cl :utils :ring :monom :order :term #| :infix |# )
 | 
|---|
| 24 |   (:export "POLY"
 | 
|---|
| 25 |            "POLY-TERMLIST"
 | 
|---|
| 26 |            "POLY-TERM-ORDER"
 | 
|---|
| 27 |            "CHANGE-TERM-ORDER")
 | 
|---|
| 28 |   (:documentation "Implements polynomials"))
 | 
|---|
| 29 | 
 | 
|---|
| 30 | (in-package :polynomial)
 | 
|---|
| 31 | 
 | 
|---|
| 32 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
 | 
|---|
| 33 | 
 | 
|---|
| 34 | (defclass poly ()
 | 
|---|
| 35 |   ((termlist :initarg :termlist :accessor poly-termlist
 | 
|---|
| 36 |              :documentation "List of terms.")
 | 
|---|
| 37 |    (order :initarg :order :accessor poly-term-order
 | 
|---|
| 38 |           :documentation "Monomial/term order."))
 | 
|---|
| 39 |   (:default-initargs :termlist nil :order #'lex>)
 | 
|---|
| 40 |   (:documentation "A polynomial with a list of terms TERMLIST, ordered
 | 
|---|
| 41 | according to term order ORDER, which defaults to LEX>."))
 | 
|---|
| 42 | 
 | 
|---|
| 43 | (defmethod print-object ((self poly) stream)
 | 
|---|
| 44 |   (format stream "#<POLY TERMLIST=~A ORDER=~A>" 
 | 
|---|
| 45 |           (poly-termlist self)
 | 
|---|
| 46 |           (poly-term-order self)))
 | 
|---|
| 47 | 
 | 
|---|
| 48 | (defgeneric change-term-order (self other)
 | 
|---|
| 49 |   (:documentation "Change term order of SELF to the term order of OTHER.")
 | 
|---|
| 50 |   (:method ((self poly) (other poly))
 | 
|---|
| 51 |     (unless (eq (poly-term-order self) (poly-term-order other))
 | 
|---|
| 52 |       (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
 | 
|---|
| 53 |             (poly-term-order self) (poly-term-order other)))
 | 
|---|
| 54 |     self))
 | 
|---|
| 55 | 
 | 
|---|
| 56 | (defmethod r-equalp ((self poly) (other poly))
 | 
|---|
| 57 |   "POLY instances are R-EQUALP if they have the same
 | 
|---|
| 58 | order and if all terms are R-EQUALP."
 | 
|---|
| 59 |   (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
 | 
|---|
| 60 |        (eq (poly-term-order self) (poly-term-order other))))
 | 
|---|
| 61 | 
 | 
|---|
| 62 | (defmethod insert-item ((self poly) (item term))
 | 
|---|
| 63 |   (push item (poly-termlist self))
 | 
|---|
| 64 |   self)
 | 
|---|
| 65 | 
 | 
|---|
| 66 | (defmethod append-item ((self poly) (item term))
 | 
|---|
| 67 |   (setf (cdr (last (poly-termlist self))) (list item))
 | 
|---|
| 68 |   self)
 | 
|---|
| 69 | 
 | 
|---|
| 70 | ;; Leading term
 | 
|---|
| 71 | (defgeneric leading-term (object)
 | 
|---|
| 72 |   (:method ((self poly)) 
 | 
|---|
| 73 |     (car (poly-termlist self)))
 | 
|---|
| 74 |   (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
 | 
|---|
| 75 | 
 | 
|---|
| 76 | ;; Second term
 | 
|---|
| 77 | (defgeneric second-leading-term (object) 
 | 
|---|
| 78 |   (:method ((self poly))
 | 
|---|
| 79 |     (cadar (poly-termlist self)))
 | 
|---|
| 80 |   (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
 | 
|---|
| 81 | 
 | 
|---|
| 82 | ;; Leading coefficient
 | 
|---|
| 83 | (defgeneric leading-coefficient (object)
 | 
|---|
| 84 |   (:method ((self poly))
 | 
|---|
| 85 |     (r-coeff (leading-term self)))
 | 
|---|
| 86 |   (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
 | 
|---|
| 87 | 
 | 
|---|
| 88 | ;; Second coefficient
 | 
|---|
| 89 | (defgeneric second-leading-coefficient (object)
 | 
|---|
| 90 |   (:method ((self poly)) 
 | 
|---|
| 91 |     (r-coeff (second-leading-term self)))
 | 
|---|
| 92 |   (:documentation "The second leading coefficient of a polynomial. It
 | 
|---|
| 93 |   signals error for a polynomial with at most one term."))
 | 
|---|
| 94 | 
 | 
|---|
| 95 | ;; Testing for a zero polynomial
 | 
|---|
| 96 | (defmethod r-zerop ((self poly))
 | 
|---|
| 97 |   (null (poly-termlist self)))
 | 
|---|
| 98 | 
 | 
|---|
| 99 | ;; The number of terms
 | 
|---|
| 100 | (defmethod r-length ((self poly))
 | 
|---|
| 101 |   (length (poly-termlist self)))
 | 
|---|
| 102 | 
 | 
|---|
| 103 | (defmethod multiply-by ((self poly) (other monom))
 | 
|---|
| 104 |   (mapc #'(lambda (term) (multiply-by term other))
 | 
|---|
| 105 |         (poly-termlist self))
 | 
|---|
| 106 |   self)
 | 
|---|
| 107 | 
 | 
|---|
| 108 | (defmethod multiply-by ((self poly) (other scalar))
 | 
|---|
| 109 |   (mapc #'(lambda (term) (multiply-by term other))
 | 
|---|
| 110 |         (poly-termlist self))
 | 
|---|
| 111 |   self)
 | 
|---|
| 112 | 
 | 
|---|
| 113 | 
 | 
|---|
| 114 | (defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
 | 
|---|
| 115 |   "Return an expression which will efficiently adds/subtracts two
 | 
|---|
| 116 | polynomials, P and Q.  The addition/subtraction of coefficients is
 | 
|---|
| 117 | performed by calling ADD/SUBTRACT-METHOD-NAME.  If UMINUS-METHOD-NAME
 | 
|---|
| 118 | is supplied, it is used to negate the coefficients of Q which do not
 | 
|---|
| 119 | have a corresponding coefficient in P. The code implements an
 | 
|---|
| 120 | efficient algorithm to add two polynomials represented as sorted lists
 | 
|---|
| 121 | of terms. The code destroys both arguments, reusing the terms to build
 | 
|---|
| 122 | the result."
 | 
|---|
| 123 |   `(macrolet ((lc (x) `(r-coeff (car ,x))))
 | 
|---|
| 124 |      (do ((p ,p)
 | 
|---|
| 125 |           (q ,q)
 | 
|---|
| 126 |           r)
 | 
|---|
| 127 |          ((or (endp p) (endp q))
 | 
|---|
| 128 |           ;; NOTE: R contains the result in reverse order. Can it
 | 
|---|
| 129 |           ;; be more efficient to produce the terms in correct order?
 | 
|---|
| 130 |           (unless (endp q) 
 | 
|---|
| 131 |             ;; Upon subtraction, we must change the sign of
 | 
|---|
| 132 |             ;; all coefficients in q
 | 
|---|
| 133 |             ,@(when uminus-fn
 | 
|---|
| 134 |                     `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
 | 
|---|
| 135 |             (setf r (nreconc r q)))
 | 
|---|
| 136 |           r)
 | 
|---|
| 137 |        (multiple-value-bind 
 | 
|---|
| 138 |              (greater-p equal-p)
 | 
|---|
| 139 |            (funcall ,order-fn (car p) (car q))
 | 
|---|
| 140 |          (cond
 | 
|---|
| 141 |            (greater-p
 | 
|---|
| 142 |             (rotatef (cdr p) r p)
 | 
|---|
| 143 |             )
 | 
|---|
| 144 |            (equal-p
 | 
|---|
| 145 |             (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
 | 
|---|
| 146 |               (cond 
 | 
|---|
| 147 |                 ((r-zerop s)
 | 
|---|
| 148 |                  (setf p (cdr p))
 | 
|---|
| 149 |                  )
 | 
|---|
| 150 |                 (t 
 | 
|---|
| 151 |                  (setf (lc p) s)
 | 
|---|
| 152 |                  (rotatef (cdr p) r p))))
 | 
|---|
| 153 |             (setf q (cdr q))
 | 
|---|
| 154 |             )
 | 
|---|
| 155 |            (t 
 | 
|---|
| 156 |             ;;Negate the term of Q if UMINUS provided, signallig
 | 
|---|
| 157 |             ;;that we are doing subtraction
 | 
|---|
| 158 |             ,(when uminus-fn
 | 
|---|
| 159 |                    `(setf (lc q) (funcall ,uminus-fn (lc q))))
 | 
|---|
| 160 |             (rotatef (cdr q) r q)))))))
 | 
|---|
| 161 | 
 | 
|---|
| 162 | 
 | 
|---|
| 163 | (defmacro def-add/subtract-method (add/subtract-method-name
 | 
|---|
| 164 |                                    uminus-method-name
 | 
|---|
| 165 |                                    &optional
 | 
|---|
| 166 |                                      (doc-string nil doc-string-supplied-p))
 | 
|---|
| 167 |   "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
 | 
|---|
| 168 |   `(defmethod ,add/subtract-method-name ((self poly) (other poly))
 | 
|---|
| 169 |      ,@(when doc-string-supplied-p `(,doc-string))
 | 
|---|
| 170 |      ;; Ensure orders are compatible
 | 
|---|
| 171 |      (change-term-order other self)
 | 
|---|
| 172 |      (setf (poly-termlist self) (fast-add/subtract 
 | 
|---|
| 173 |                                  (poly-termlist self) (poly-termlist other)
 | 
|---|
| 174 |                                  (poly-term-order self)
 | 
|---|
| 175 |                                  #',add/subtract-method-name
 | 
|---|
| 176 |                                  ,(when uminus-method-name `(function ,uminus-method-name))))
 | 
|---|
| 177 |      self))
 | 
|---|
| 178 | 
 | 
|---|
| 179 | (eval-when (:compile-toplevel :load-toplevel :execute)
 | 
|---|
| 180 | 
 | 
|---|
| 181 |   (def-add/subtract-method add-to nil
 | 
|---|
| 182 |     "Adds to polynomial SELF another polynomial OTHER.
 | 
|---|
| 183 | This operation destructively modifies both polynomials.
 | 
|---|
| 184 | The result is stored in SELF. This implementation does
 | 
|---|
| 185 | no consing, entirely reusing the sells of SELF and OTHER.")
 | 
|---|
| 186 | 
 | 
|---|
| 187 |   (def-add/subtract-method subtract-from unary-minus
 | 
|---|
| 188 |     "Subtracts from polynomial SELF another polynomial OTHER.
 | 
|---|
| 189 | This operation destructively modifies both polynomials.
 | 
|---|
| 190 | The result is stored in SELF. This implementation does
 | 
|---|
| 191 | no consing, entirely reusing the sells of SELF and OTHER.")
 | 
|---|
| 192 | 
 | 
|---|
| 193 |   )
 | 
|---|
| 194 | 
 | 
|---|
| 195 | 
 | 
|---|
| 196 | 
 | 
|---|
| 197 | (defmethod unary-minus ((self poly))
 | 
|---|
| 198 |   "Destructively modifies the coefficients of the polynomial SELF,
 | 
|---|
| 199 | by changing their sign."
 | 
|---|
| 200 |   (mapc #'unary-minus (poly-termlist self))
 | 
|---|
| 201 |   self)
 | 
|---|
| 202 | 
 | 
|---|
| 203 | (defun add-termlists (p q order-fn)
 | 
|---|
| 204 |   "Destructively adds two termlists P and Q ordered according to ORDER-FN."
 | 
|---|
| 205 |   (fast-add/subtract p q order-fn #'add-to nil))
 | 
|---|
| 206 | 
 | 
|---|
| 207 | (defmacro multiply-term-by-termlist-dropping-zeros (term termlist 
 | 
|---|
| 208 |                                                     &optional (reverse-arg-order-P nil))
 | 
|---|
| 209 |   "Multiplies term TERM by a list of term, TERMLIST.
 | 
|---|
| 210 | Takes into accound divisors of zero in the ring, by
 | 
|---|
| 211 | deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
 | 
|---|
| 212 | is T, change the order of arguments; this may be important
 | 
|---|
| 213 | if we extend the package to non-commutative rings."
 | 
|---|
| 214 |   `(mapcan #'(lambda (other-term) 
 | 
|---|
| 215 |                (let ((prod (r*
 | 
|---|
| 216 |                             ,@(cond 
 | 
|---|
| 217 |                                (reverse-arg-order-p
 | 
|---|
| 218 |                                 `(other-term ,term))
 | 
|---|
| 219 |                                (t 
 | 
|---|
| 220 |                                 `(,term other-term))))))
 | 
|---|
| 221 |                  (cond 
 | 
|---|
| 222 |                    ((r-zerop prod) nil)
 | 
|---|
| 223 |                    (t (list prod)))))
 | 
|---|
| 224 |            ,termlist))
 | 
|---|
| 225 | 
 | 
|---|
| 226 | (defun multiply-termlists (p q order-fn)
 | 
|---|
| 227 |   (cond 
 | 
|---|
| 228 |     ((or (endp p) (endp q))         
 | 
|---|
| 229 |      ;;p or q is 0 (represented by NIL)
 | 
|---|
| 230 |      nil)       
 | 
|---|
| 231 |     ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
 | 
|---|
| 232 |     ((endp (cdr p))
 | 
|---|
| 233 |      (multiply-term-by-termlist-dropping-zeros (car p) q))
 | 
|---|
| 234 |     ((endp (cdr q))
 | 
|---|
| 235 |      (multiply-term-by-termlist-dropping-zeros (car q) p t))
 | 
|---|
| 236 |     (t
 | 
|---|
| 237 |      (cons (r* (car p) (car q))
 | 
|---|
| 238 |            (add-termlists 
 | 
|---|
| 239 |             (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
 | 
|---|
| 240 |             (multiply-termlists (cdr p) q order-fn)
 | 
|---|
| 241 |             order-fn)))))
 | 
|---|
| 242 | 
 | 
|---|
| 243 | (defmethod multiply-by ((self poly) (other poly))
 | 
|---|
| 244 |   (change-term-order other self)
 | 
|---|
| 245 |   (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
 | 
|---|
| 246 |                                                  (poly-termlist other)
 | 
|---|
| 247 |                                                  (poly-term-order self)))
 | 
|---|
| 248 |   self)
 | 
|---|
| 249 | 
 | 
|---|
| 250 | (defmethod r* ((poly1 poly) (poly2 poly))
 | 
|---|
| 251 |   "Non-destructively multiply POLY1 by POLY2."
 | 
|---|
| 252 |   (multiply-by (copy-instance POLY1) (copy-instance POLY2)))
 | 
|---|
| 253 | 
 | 
|---|
| 254 | (defmethod left-tensor-product-by ((self poly) (other term))
 | 
|---|
| 255 |   (setf (poly-termlist self) 
 | 
|---|
| 256 |         (mapcan #'(lambda (term) 
 | 
|---|
| 257 |                     (let ((prod (left-tensor-product-by term other)))
 | 
|---|
| 258 |                       (cond 
 | 
|---|
| 259 |                         ((r-zerop prod) nil)
 | 
|---|
| 260 |                         (t (list prod)))))
 | 
|---|
| 261 |                 (poly-termlist self)))
 | 
|---|
| 262 |   self)
 | 
|---|
| 263 | 
 | 
|---|
| 264 | (defmethod right-tensor-product-by ((self poly) (other term))
 | 
|---|
| 265 |   (setf (poly-termlist self) 
 | 
|---|
| 266 |         (mapcan #'(lambda (term) 
 | 
|---|
| 267 |                     (let ((prod (right-tensor-product-by term other)))
 | 
|---|
| 268 |                       (cond 
 | 
|---|
| 269 |                         ((r-zerop prod) nil)
 | 
|---|
| 270 |                         (t (list prod)))))
 | 
|---|
| 271 |                 (poly-termlist self)))
 | 
|---|
| 272 |   self)
 | 
|---|
| 273 | 
 | 
|---|
| 274 | (defmethod left-tensor-product-by ((self poly) (other monom))
 | 
|---|
| 275 |   (setf (poly-termlist self) 
 | 
|---|
| 276 |         (mapcan #'(lambda (term) 
 | 
|---|
| 277 |                     (let ((prod (left-tensor-product-by term other)))
 | 
|---|
| 278 |                       (cond 
 | 
|---|
| 279 |                         ((r-zerop prod) nil)
 | 
|---|
| 280 |                         (t (list prod)))))
 | 
|---|
| 281 |                 (poly-termlist self)))
 | 
|---|
| 282 |   self)
 | 
|---|
| 283 | 
 | 
|---|
| 284 | (defmethod right-tensor-product-by ((self poly) (other monom))
 | 
|---|
| 285 |   (setf (poly-termlist self) 
 | 
|---|
| 286 |         (mapcan #'(lambda (term) 
 | 
|---|
| 287 |                     (let ((prod (right-tensor-product-by term other)))
 | 
|---|
| 288 |                       (cond 
 | 
|---|
| 289 |                         ((r-zerop prod) nil)
 | 
|---|
| 290 |                         (t (list prod)))))
 | 
|---|
| 291 |                 (poly-termlist self)))
 | 
|---|
| 292 |   self)
 | 
|---|
| 293 | 
 | 
|---|
| 294 | 
 | 
|---|
| 295 | (defun poly-standard-extension (plist &aux (k (length plist)) (i 0))
 | 
|---|
| 296 |   "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
 | 
|---|
| 297 | is a list of polynomials. Destructively modifies PLIST elements."
 | 
|---|
| 298 |   (mapc #'(lambda (poly)
 | 
|---|
| 299 |             (left-tensor-product-by poly 
 | 
|---|
| 300 |                                     (prog1 (make-monom-variable k i) (incf i))))
 | 
|---|
| 301 |         plist))
 | 
|---|
| 302 | 
 | 
|---|
| 303 | (defun saturation-extension (plist 
 | 
|---|
| 304 |                              &aux 
 | 
|---|
| 305 |                                (plist (poly-saturation-extension plist))
 | 
|---|
| 306 |                                (dim (poly-dimension (car plist))))
 | 
|---|
| 307 |   "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
 | 
|---|
| 308 |   (flet ((subtract-1 (p) 
 | 
|---|
| 309 |            (insert-item (make-instance 'term :coeff -1 :dimension dim))))
 | 
|---|
| 310 |     (mapc #'subtract-1 plist))
 | 
|---|
| 311 |   (nconc F plist))
 | 
|---|
| 312 | 
 | 
|---|
| 313 | 
 | 
|---|
| 314 | (defun polysaturation-extension (ring f plist 
 | 
|---|
| 315 |                                  &aux 
 | 
|---|
| 316 |                                    (k (length plist))
 | 
|---|
| 317 |                                    (d (+ k (monom-dimension (poly-lm (car plist)))))
 | 
|---|
| 318 |                                    ;; Add k variables to f
 | 
|---|
| 319 |                                    (f (poly-list-add-variables f k))
 | 
|---|
| 320 |                                    ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
 | 
|---|
| 321 |                                    (plist (apply #'poly-append (poly-standard-extension plist))))
 | 
|---|
| 322 |   "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
 | 
|---|
| 323 |   ;; Add -1 as the last term
 | 
|---|
| 324 |   (declare (type ring ring))
 | 
|---|
| 325 |   (setf (cdr (last (poly-termlist plist)))
 | 
|---|
| 326 |         (list (make-term :monom (make-monom :dimension d)
 | 
|---|
| 327 |                          :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
 | 
|---|
| 328 |   (append f (list plist)))
 | 
|---|
| 329 | 
 | 
|---|
| 330 | (defun saturation-extension-1 (ring f p) 
 | 
|---|
| 331 |   "Calculate [F, U*P-1]. It destructively modifies F."
 | 
|---|
| 332 |   (declare (type ring ring))
 | 
|---|
| 333 |   (polysaturation-extension ring f (list p)))
 | 
|---|
| 334 | 
 | 
|---|
| 335 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
| 336 | ;;
 | 
|---|
| 337 | ;; Evaluation of polynomial (prefix) expressions
 | 
|---|
| 338 | ;;
 | 
|---|
| 339 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
| 340 | 
 | 
|---|
| 341 | (defun coerce-coeff (ring expr vars)
 | 
|---|
| 342 |   "Coerce an element of the coefficient ring to a constant polynomial."
 | 
|---|
| 343 |   ;; Modular arithmetic handler by rat
 | 
|---|
| 344 |   (declare (type ring ring))
 | 
|---|
| 345 |   (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
 | 
|---|
| 346 |                                             :coeff (funcall (ring-parse ring) expr)))
 | 
|---|
| 347 |                            0))
 | 
|---|
| 348 | 
 | 
|---|
| 349 | (defun poly-eval (expr vars 
 | 
|---|
| 350 |                   &optional 
 | 
|---|
| 351 |                     (ring +ring-of-integers+) 
 | 
|---|
| 352 |                     (order #'lex>)
 | 
|---|
| 353 |                     (list-marker :[)
 | 
|---|
| 354 |                   &aux 
 | 
|---|
| 355 |                     (ring-and-order (make-ring-and-order :ring ring :order order)))
 | 
|---|
| 356 |   "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
 | 
|---|
| 357 | variables VARS. Return the resulting polynomial or list of
 | 
|---|
| 358 | polynomials.  Standard arithmetical operators in form EXPR are
 | 
|---|
| 359 | replaced with their analogues in the ring of polynomials, and the
 | 
|---|
| 360 | resulting expression is evaluated, resulting in a polynomial or a list
 | 
|---|
| 361 | of polynomials in internal form. A similar operation in another computer
 | 
|---|
| 362 | algebra system could be called 'expand' or so."
 | 
|---|
| 363 |   (declare (type ring ring))
 | 
|---|
| 364 |   (labels ((p-eval (arg) (poly-eval arg vars ring order))
 | 
|---|
| 365 |            (p-eval-scalar (arg) (poly-eval-scalar arg))
 | 
|---|
| 366 |            (p-eval-list (args) (mapcar #'p-eval args))
 | 
|---|
| 367 |            (p-add (x y) (poly-add ring-and-order x y)))
 | 
|---|
| 368 |     (cond
 | 
|---|
| 369 |       ((null expr) (error "Empty expression"))
 | 
|---|
| 370 |       ((eql expr 0) (make-poly-zero))
 | 
|---|
| 371 |       ((member expr vars :test #'equalp)
 | 
|---|
| 372 |        (let ((pos (position expr vars :test #'equalp)))
 | 
|---|
| 373 |          (make-poly-variable ring (length vars) pos)))
 | 
|---|
| 374 |       ((atom expr)
 | 
|---|
| 375 |        (coerce-coeff ring expr vars))
 | 
|---|
| 376 |       ((eq (car expr) list-marker)
 | 
|---|
| 377 |        (cons list-marker (p-eval-list (cdr expr))))
 | 
|---|
| 378 |       (t
 | 
|---|
| 379 |        (case (car expr)
 | 
|---|
| 380 |          (+ (reduce #'p-add (p-eval-list (cdr expr))))
 | 
|---|
| 381 |          (- (case (length expr)
 | 
|---|
| 382 |               (1 (make-poly-zero))
 | 
|---|
| 383 |               (2 (poly-uminus ring (p-eval (cadr expr))))
 | 
|---|
| 384 |               (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
 | 
|---|
| 385 |               (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
 | 
|---|
| 386 |                                    (reduce #'p-add (p-eval-list (cddr expr)))))))
 | 
|---|
| 387 |          (*
 | 
|---|
| 388 |           (if (endp (cddr expr))                ;unary
 | 
|---|
| 389 |               (p-eval (cdr expr))
 | 
|---|
| 390 |               (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
 | 
|---|
| 391 |          (/ 
 | 
|---|
| 392 |           ;; A polynomial can be divided by a scalar
 | 
|---|
| 393 |           (cond 
 | 
|---|
| 394 |             ((endp (cddr expr))
 | 
|---|
| 395 |              ;; A special case (/ ?), the inverse
 | 
|---|
| 396 |              (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
 | 
|---|
| 397 |             (t
 | 
|---|
| 398 |              (let ((num (p-eval (cadr expr)))
 | 
|---|
| 399 |                    (denom-inverse (apply (ring-div ring)
 | 
|---|
| 400 |                                          (cons (funcall (ring-unit ring)) 
 | 
|---|
| 401 |                                                (mapcar #'p-eval-scalar (cddr expr))))))
 | 
|---|
| 402 |                (scalar-times-poly ring denom-inverse num)))))
 | 
|---|
| 403 |          (expt
 | 
|---|
| 404 |           (cond
 | 
|---|
| 405 |             ((member (cadr expr) vars :test #'equalp)
 | 
|---|
| 406 |              ;;Special handling of (expt var pow)
 | 
|---|
| 407 |              (let ((pos (position (cadr expr) vars :test #'equalp)))
 | 
|---|
| 408 |                (make-poly-variable ring (length vars) pos (caddr expr))))
 | 
|---|
| 409 |             ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
 | 
|---|
| 410 |              ;; Negative power means division in coefficient ring
 | 
|---|
| 411 |              ;; Non-integer power means non-polynomial coefficient
 | 
|---|
| 412 |              (coerce-coeff ring expr vars))
 | 
|---|
| 413 |             (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
 | 
|---|
| 414 |          (otherwise
 | 
|---|
| 415 |           (coerce-coeff ring expr vars)))))))
 | 
|---|
| 416 | 
 | 
|---|
| 417 | (defun poly-eval-scalar (expr 
 | 
|---|
| 418 |                          &optional
 | 
|---|
| 419 |                            (ring +ring-of-integers+)
 | 
|---|
| 420 |                          &aux 
 | 
|---|
| 421 |                            (order #'lex>))
 | 
|---|
| 422 |   "Evaluate a scalar expression EXPR in ring RING."
 | 
|---|
| 423 |   (declare (type ring ring))
 | 
|---|
| 424 |   (poly-lc (poly-eval expr nil ring order)))
 | 
|---|
| 425 | 
 | 
|---|
| 426 | (defun spoly (ring-and-order f g
 | 
|---|
| 427 |               &aux
 | 
|---|
| 428 |                 (ring (ro-ring ring-and-order)))
 | 
|---|
| 429 |   "It yields the S-polynomial of polynomials F and G."
 | 
|---|
| 430 |   (declare (type ring-and-order ring-and-order) (type poly f g))
 | 
|---|
| 431 |   (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
 | 
|---|
| 432 |          (mf (monom-div lcm (poly-lm f)))
 | 
|---|
| 433 |          (mg (monom-div lcm (poly-lm g))))
 | 
|---|
| 434 |     (declare (type monom mf mg))
 | 
|---|
| 435 |     (multiple-value-bind (c cf cg)
 | 
|---|
| 436 |         (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
 | 
|---|
| 437 |       (declare (ignore c))
 | 
|---|
| 438 |       (poly-sub 
 | 
|---|
| 439 |        ring-and-order
 | 
|---|
| 440 |        (scalar-times-poly ring cg (monom-times-poly mf f))
 | 
|---|
| 441 |        (scalar-times-poly ring cf (monom-times-poly mg g))))))
 | 
|---|
| 442 | 
 | 
|---|
| 443 | 
 | 
|---|
| 444 | (defun poly-primitive-part (ring p)
 | 
|---|
| 445 |   "Divide polynomial P with integer coefficients by gcd of its
 | 
|---|
| 446 | coefficients and return the result."
 | 
|---|
| 447 |   (declare (type ring ring) (type poly p))
 | 
|---|
| 448 |   (if (poly-zerop p)
 | 
|---|
| 449 |       (values p 1)
 | 
|---|
| 450 |       (let ((c (poly-content ring p)))
 | 
|---|
| 451 |         (values (make-poly-from-termlist 
 | 
|---|
| 452 |                  (mapcar
 | 
|---|
| 453 |                   #'(lambda (x)
 | 
|---|
| 454 |                       (make-term :monom (term-monom x)
 | 
|---|
| 455 |                                  :coeff (funcall (ring-div ring) (term-coeff x) c)))
 | 
|---|
| 456 |                   (poly-termlist p))
 | 
|---|
| 457 |                  (poly-sugar p))
 | 
|---|
| 458 |                 c))))
 | 
|---|
| 459 | 
 | 
|---|
| 460 | (defun poly-content (ring p)
 | 
|---|
| 461 |   "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
 | 
|---|
| 462 | to compute the greatest common divisor."
 | 
|---|
| 463 |   (declare (type ring ring) (type poly p))
 | 
|---|
| 464 |   (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
 | 
|---|
| 465 | 
 | 
|---|
| 466 | (defun read-infix-form (&key (stream t))
 | 
|---|
| 467 |   "Parser of infix expressions with integer/rational coefficients
 | 
|---|
| 468 | The parser will recognize two kinds of polynomial expressions:
 | 
|---|
| 469 | 
 | 
|---|
| 470 | - polynomials in fully expanded forms with coefficients
 | 
|---|
| 471 |   written in front of symbolic expressions; constants can be optionally
 | 
|---|
| 472 |   enclosed in (); for example, the infix form
 | 
|---|
| 473 |         X^2-Y^2+(-4/3)*U^2*W^3-5
 | 
|---|
| 474 |   parses to
 | 
|---|
| 475 |         (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
 | 
|---|
| 476 | 
 | 
|---|
| 477 | - lists of polynomials; for example
 | 
|---|
| 478 |         [X-Y, X^2+3*Z]          
 | 
|---|
| 479 |   parses to
 | 
|---|
| 480 |           (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
 | 
|---|
| 481 |   where the first symbol [ marks a list of polynomials.
 | 
|---|
| 482 | 
 | 
|---|
| 483 | -other infix expressions, for example
 | 
|---|
| 484 |         [(X-Y)*(X+Y)/Z,(X+1)^2]
 | 
|---|
| 485 | parses to:
 | 
|---|
| 486 |         (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
 | 
|---|
| 487 | Currently this function is implemented using M. Kantrowitz's INFIX package."
 | 
|---|
| 488 |   (read-from-string
 | 
|---|
| 489 |    (concatenate 'string
 | 
|---|
| 490 |                 "#I(" 
 | 
|---|
| 491 |                 (with-output-to-string (s)
 | 
|---|
| 492 |                   (loop
 | 
|---|
| 493 |                      (multiple-value-bind (line eof)
 | 
|---|
| 494 |                          (read-line stream t)
 | 
|---|
| 495 |                        (format s "~A" line)
 | 
|---|
| 496 |                        (when eof (return)))))
 | 
|---|
| 497 |                 ")")))
 | 
|---|
| 498 | 
 | 
|---|
| 499 | (defun read-poly (vars &key
 | 
|---|
| 500 |                          (stream t) 
 | 
|---|
| 501 |                          (ring +ring-of-integers+) 
 | 
|---|
| 502 |                          (order #'lex>))
 | 
|---|
| 503 |   "Reads an expression in prefix form from a stream STREAM.
 | 
|---|
| 504 | The expression read from the strem should represent a polynomial or a
 | 
|---|
| 505 | list of polynomials in variables VARS, over the ring RING.  The
 | 
|---|
| 506 | polynomial or list of polynomials is returned, with terms in each
 | 
|---|
| 507 | polynomial ordered according to monomial order ORDER."
 | 
|---|
| 508 |   (poly-eval (read-infix-form :stream stream) vars ring order))
 | 
|---|
| 509 | 
 | 
|---|
| 510 | (defun string->poly (str vars 
 | 
|---|
| 511 |                      &optional
 | 
|---|
| 512 |                        (ring +ring-of-integers+) 
 | 
|---|
| 513 |                        (order #'lex>))
 | 
|---|
| 514 |   "Converts a string STR to a polynomial in variables VARS."
 | 
|---|
| 515 |   (with-input-from-string (s str)
 | 
|---|
| 516 |     (read-poly vars :stream s :ring ring :order order)))
 | 
|---|
| 517 | 
 | 
|---|
| 518 | (defun poly->alist (p)
 | 
|---|
| 519 |   "Convert a polynomial P to an association list. Thus, the format of the
 | 
|---|
| 520 | returned value is  ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
 | 
|---|
| 521 | MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
 | 
|---|
| 522 | corresponding coefficient in the ring."
 | 
|---|
| 523 |   (cond
 | 
|---|
| 524 |     ((poly-p p)
 | 
|---|
| 525 |      (mapcar #'term->cons (poly-termlist p)))
 | 
|---|
| 526 |     ((and (consp p) (eq (car p) :[))
 | 
|---|
| 527 |      (cons :[ (mapcar #'poly->alist (cdr p))))))
 | 
|---|
| 528 | 
 | 
|---|
| 529 | (defun string->alist (str vars
 | 
|---|
| 530 |                       &optional
 | 
|---|
| 531 |                         (ring +ring-of-integers+) 
 | 
|---|
| 532 |                         (order #'lex>))
 | 
|---|
| 533 |   "Convert a string STR representing a polynomial or polynomial list to
 | 
|---|
| 534 | an association list (... (MONOM . COEFF) ...)."
 | 
|---|
| 535 |   (poly->alist (string->poly str vars ring order)))
 | 
|---|
| 536 | 
 | 
|---|
| 537 | (defun poly-equal-no-sugar-p (p q)
 | 
|---|
| 538 |   "Compare polynomials for equality, ignoring sugar."
 | 
|---|
| 539 |   (declare (type poly p q))
 | 
|---|
| 540 |   (equalp (poly-termlist p) (poly-termlist q)))
 | 
|---|
| 541 | 
 | 
|---|
| 542 | (defun poly-set-equal-no-sugar-p (p q)
 | 
|---|
| 543 |   "Compare polynomial sets P and Q for equality, ignoring sugar."
 | 
|---|
| 544 |   (null (set-exclusive-or  p q :test #'poly-equal-no-sugar-p )))
 | 
|---|
| 545 | 
 | 
|---|
| 546 | (defun poly-list-equal-no-sugar-p (p q)
 | 
|---|
| 547 |   "Compare polynomial lists P and Q for equality, ignoring sugar."
 | 
|---|
| 548 |   (every #'poly-equal-no-sugar-p p q))
 | 
|---|
| 549 | |#
 | 
|---|