| 1 | ;;; -*- Mode: Lisp -*-
|
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 3 | ;;;
|
|---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
|---|
| 5 | ;;;
|
|---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
|---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
|---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
|---|
| 9 | ;;; (at your option) any later version.
|
|---|
| 10 | ;;;
|
|---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
|---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 14 | ;;; GNU General Public License for more details.
|
|---|
| 15 | ;;;
|
|---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
|---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
|---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|---|
| 19 | ;;;
|
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 21 |
|
|---|
| 22 | (defpackage "POLYNOMIAL"
|
|---|
| 23 | (:use :cl :ring :monom :order :term #| :infix |# )
|
|---|
| 24 | (:export "POLY"
|
|---|
| 25 | "POLY-TERMLIST"
|
|---|
| 26 | "POLY-TERM-ORDER")
|
|---|
| 27 | (:documentation "Implements polynomials"))
|
|---|
| 28 |
|
|---|
| 29 | (in-package :polynomial)
|
|---|
| 30 |
|
|---|
| 31 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
|
|---|
| 32 |
|
|---|
| 33 | (defclass poly ()
|
|---|
| 34 | ((termlist :initarg :termlist :accessor poly-termlist
|
|---|
| 35 | :documentation "List of terms.")
|
|---|
| 36 | (order :initarg :order :accessor poly-term-order
|
|---|
| 37 | :documentation "Monomial/term order."))
|
|---|
| 38 | (:default-initargs :termlist nil :order #'lex>)
|
|---|
| 39 | (:documentation "A polynomial with a list of terms TERMLIST, ordered
|
|---|
| 40 | according to term order ORDER, which defaults to LEX>."))
|
|---|
| 41 |
|
|---|
| 42 | (defmethod print-object ((self poly) stream)
|
|---|
| 43 | (format stream "#<POLY TERMLIST=~A ORDER=~A>"
|
|---|
| 44 | (poly-termlist self)
|
|---|
| 45 | (poly-term-order self)))
|
|---|
| 46 |
|
|---|
| 47 | (defmethod r-equalp ((self poly) (other poly))
|
|---|
| 48 | "POLY instances are R-EQUALP if they have the same
|
|---|
| 49 | order and if all terms are R-EQUALP."
|
|---|
| 50 | (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
|
|---|
| 51 | (eq (poly-term-order self) (poly-term-order other))))
|
|---|
| 52 |
|
|---|
| 53 | (defmethod insert-item ((self poly) (item term))
|
|---|
| 54 | (push item (poly-termlist self))
|
|---|
| 55 | self)
|
|---|
| 56 |
|
|---|
| 57 | (defmethod append-item ((self poly) (item term))
|
|---|
| 58 | (setf (cdr (last (poly-termlist self))) (list item))
|
|---|
| 59 | self)
|
|---|
| 60 |
|
|---|
| 61 | ;; Leading term
|
|---|
| 62 | (defgeneric leading-term (object)
|
|---|
| 63 | (:method ((self poly))
|
|---|
| 64 | (car (poly-termlist self)))
|
|---|
| 65 | (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
|
|---|
| 66 |
|
|---|
| 67 | ;; Second term
|
|---|
| 68 | (defgeneric second-leading-term (object)
|
|---|
| 69 | (:method ((self poly))
|
|---|
| 70 | (cadar (poly-termlist self)))
|
|---|
| 71 | (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
|
|---|
| 72 |
|
|---|
| 73 | ;; Leading coefficient
|
|---|
| 74 | (defgeneric leading-coefficient (object)
|
|---|
| 75 | (:method ((self poly))
|
|---|
| 76 | (r-coeff (leading-term self)))
|
|---|
| 77 | (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
|
|---|
| 78 |
|
|---|
| 79 | ;; Second coefficient
|
|---|
| 80 | (defgeneric second-leading-coefficient (object)
|
|---|
| 81 | (:method ((self poly))
|
|---|
| 82 | (r-coeff (second-leading-term self)))
|
|---|
| 83 | (:documentation "The second leading coefficient of a polynomial. It
|
|---|
| 84 | signals error for a polynomial with at most one term."))
|
|---|
| 85 |
|
|---|
| 86 | ;; Testing for a zero polynomial
|
|---|
| 87 | (defmethod r-zerop ((self poly))
|
|---|
| 88 | (null (poly-termlist self)))
|
|---|
| 89 |
|
|---|
| 90 | ;; The number of terms
|
|---|
| 91 | (defmethod r-length ((self poly))
|
|---|
| 92 | (length (poly-termlist self)))
|
|---|
| 93 |
|
|---|
| 94 | (defmethod multiply-by ((self poly) (other monom))
|
|---|
| 95 | (mapc #'(lambda (term) (multiply-by term other))
|
|---|
| 96 | (poly-termlist self))
|
|---|
| 97 | self)
|
|---|
| 98 |
|
|---|
| 99 | (defmethod multiply-by ((self poly) (other scalar))
|
|---|
| 100 | (mapc #'(lambda (term) (multiply-by term other))
|
|---|
| 101 | (poly-termlist self))
|
|---|
| 102 | self)
|
|---|
| 103 |
|
|---|
| 104 |
|
|---|
| 105 | (defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
|
|---|
| 106 | "Return an expression which will efficiently adds/subtracts two
|
|---|
| 107 | polynomials, P and Q. The addition/subtraction of coefficients is
|
|---|
| 108 | performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
|
|---|
| 109 | is supplied, it is used to negate the coefficients of Q which do not
|
|---|
| 110 | have a corresponding coefficient in P. The code implements an
|
|---|
| 111 | efficient algorithm to add two polynomials represented as sorted lists
|
|---|
| 112 | of terms. The code destroys both arguments, reusing the terms to build
|
|---|
| 113 | the result."
|
|---|
| 114 | `(macrolet ((lc (x) `(r-coeff (car ,x))))
|
|---|
| 115 | (do ((p ,p)
|
|---|
| 116 | (q ,q)
|
|---|
| 117 | r)
|
|---|
| 118 | ((or (endp p) (endp q))
|
|---|
| 119 | ;; NOTE: R contains the result in reverse order. Can it
|
|---|
| 120 | ;; be more efficient to produce the terms in correct order?
|
|---|
| 121 | (unless (endp q)
|
|---|
| 122 | ;; Upon subtraction, we must change the sign of
|
|---|
| 123 | ;; all coefficients in q
|
|---|
| 124 | ,@(when uminus-fn
|
|---|
| 125 | `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
|
|---|
| 126 | (setf r (nreconc r q)))
|
|---|
| 127 | r)
|
|---|
| 128 | (multiple-value-bind
|
|---|
| 129 | (greater-p equal-p)
|
|---|
| 130 | (funcall ,order-fn (car p) (car q))
|
|---|
| 131 | (cond
|
|---|
| 132 | (greater-p
|
|---|
| 133 | (rotatef (cdr p) r p)
|
|---|
| 134 | )
|
|---|
| 135 | (equal-p
|
|---|
| 136 | (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
|
|---|
| 137 | (cond
|
|---|
| 138 | ((r-zerop s)
|
|---|
| 139 | (setf p (cdr p))
|
|---|
| 140 | )
|
|---|
| 141 | (t
|
|---|
| 142 | (setf (lc p) s)
|
|---|
| 143 | (rotatef (cdr p) r p))))
|
|---|
| 144 | (setf q (cdr q))
|
|---|
| 145 | )
|
|---|
| 146 | (t
|
|---|
| 147 | ;;Negate the term of Q if UMINUS provided, signallig
|
|---|
| 148 | ;;that we are doing subtraction
|
|---|
| 149 | ,(when uminus-fn
|
|---|
| 150 | `(setf (lc q) (funcall ,uminus-fn (lc q))))
|
|---|
| 151 | (rotatef (cdr q) r q)))))))
|
|---|
| 152 |
|
|---|
| 153 |
|
|---|
| 154 | (defmacro def-add/subtract-method (add/subtract-method-name
|
|---|
| 155 | uminus-method-name
|
|---|
| 156 | &optional
|
|---|
| 157 | (doc-string nil doc-string-supplied-p))
|
|---|
| 158 | "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
|
|---|
| 159 | `(defmethod ,add/subtract-method-name ((self poly) (other poly))
|
|---|
| 160 | ,@(when doc-string-supplied-p `(,doc-string))
|
|---|
| 161 | ;; Ensure orders are compatible
|
|---|
| 162 | (unless (eq (poly-term-order self) (poly-term-order other))
|
|---|
| 163 | (setf (poly-termlist other) (sort (poly-termlist other) (poly-term-order self))
|
|---|
| 164 | (poly-term-order other) (poly-term-order self)))
|
|---|
| 165 | (setf (poly-termlist self) (fast-add/subtract
|
|---|
| 166 | (poly-termlist self) (poly-termlist other)
|
|---|
| 167 | (poly-term-order self)
|
|---|
| 168 | #',add/subtract-method-name
|
|---|
| 169 | ,(when uminus-method-name `(function ,uminus-method-name))))
|
|---|
| 170 | self))
|
|---|
| 171 |
|
|---|
| 172 | (eval-when (:compile-toplevel :load-toplevel :execute)
|
|---|
| 173 |
|
|---|
| 174 | (def-add/subtract-method add-to nil
|
|---|
| 175 | "Adds to polynomial SELF another polynomial OTHER.
|
|---|
| 176 | This operation destructively modifies both polynomials.
|
|---|
| 177 | The result is stored in SELF. This implementation does
|
|---|
| 178 | no consing, entirely reusing the sells of SELF and OTHER.")
|
|---|
| 179 |
|
|---|
| 180 | (def-add/subtract-method subtract-from unary-minus
|
|---|
| 181 | "Subtracts from polynomial SELF another polynomial OTHER.
|
|---|
| 182 | This operation destructively modifies both polynomials.
|
|---|
| 183 | The result is stored in SELF. This implementation does
|
|---|
| 184 | no consing, entirely reusing the sells of SELF and OTHER.")
|
|---|
| 185 |
|
|---|
| 186 | )
|
|---|
| 187 |
|
|---|
| 188 |
|
|---|
| 189 |
|
|---|
| 190 | (defmethod unary-minus ((self poly))
|
|---|
| 191 | "Destructively modifies the coefficients of the polynomial SELF,
|
|---|
| 192 | by changing their sign."
|
|---|
| 193 | (mapc #'unary-minus (poly-termlist self))
|
|---|
| 194 | self)
|
|---|
| 195 |
|
|---|
| 196 | (defun add-termlists (p q order-fn)
|
|---|
| 197 | "Destructively adds two termlists P and Q ordered according to ORDER-FN."
|
|---|
| 198 | (fast-add/subtract p q order-fn add-to nil))
|
|---|
| 199 |
|
|---|
| 200 |
|
|---|
| 201 | (defmacro multiply-term-by-termlist-dropping-zeros (term termlist
|
|---|
| 202 | &optional (reverse-order nil))
|
|---|
| 203 | "Multiplies term TERM by a list of term, TERMLIST.
|
|---|
| 204 | Takes into accound divisors of zero in the ring, by
|
|---|
| 205 | deleting zero terms."
|
|---|
| 206 | `(mapcan #'(lambda (other-term)
|
|---|
| 207 | (let ((prod (r*
|
|---|
| 208 | ,(cond
|
|---|
| 209 | (reverse-order
|
|---|
| 210 | `(other-term ,term)
|
|---|
| 211 | `(,term other-term))))))
|
|---|
| 212 | (cond
|
|---|
| 213 | ((r-zerop prod) nil)
|
|---|
| 214 | (t (list prod)))))
|
|---|
| 215 | ,termlist))
|
|---|
| 216 |
|
|---|
| 217 | (defun multiply-termlists (p q order-fn)
|
|---|
| 218 | (cond
|
|---|
| 219 | ((or (endp p) (endp q)) nil) ;p or q is 0 (represented by NIL)
|
|---|
| 220 | ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
|
|---|
| 221 | ((endp (cdr p))
|
|---|
| 222 | (multiply-term-by-termlist-dropping-zeros (car p) q)
|
|---|
| 223 | ((endp (cdr q))
|
|---|
| 224 | (multiply-term-by-termlist-dropping-zeros (car q) p t)
|
|---|
| 225 | (t
|
|---|
| 226 | (nconc (multiply-terms (car p) (car q))
|
|---|
| 227 | (tail (add-termlists
|
|---|
| 228 | (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
|
|---|
| 229 | (multiply-termlists (cdr p) q)
|
|---|
| 230 | order-fn))))))))
|
|---|
| 231 |
|
|---|
| 232 |
|
|---|
| 233 | (defmethod multiply-by ((self poly) (other poly))
|
|---|
| 234 | (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
|
|---|
| 235 | (poly-termlist other)
|
|---|
| 236 | (poly-term-order self)))
|
|---|
| 237 | self)
|
|---|
| 238 |
|
|---|
| 239 |
|
|---|
| 240 | #|
|
|---|
| 241 |
|
|---|
| 242 |
|
|---|
| 243 | (defun poly-standard-extension (plist &aux (k (length plist)))
|
|---|
| 244 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
|
|---|
| 245 | is a list of polynomials."
|
|---|
| 246 | (declare (list plist) (fixnum k))
|
|---|
| 247 | (labels ((incf-power (g i)
|
|---|
| 248 | (dolist (x (poly-termlist g))
|
|---|
| 249 | (incf (monom-elt (term-monom x) i)))
|
|---|
| 250 | (incf (poly-sugar g))))
|
|---|
| 251 | (setf plist (poly-list-add-variables plist k))
|
|---|
| 252 | (dotimes (i k plist)
|
|---|
| 253 | (incf-power (nth i plist) i))))
|
|---|
| 254 |
|
|---|
| 255 |
|
|---|
| 256 |
|
|---|
| 257 | (defun saturation-extension (ring f plist
|
|---|
| 258 | &aux
|
|---|
| 259 | (k (length plist))
|
|---|
| 260 | (d (monom-dimension (poly-lm (car plist))))
|
|---|
| 261 | f-x plist-x)
|
|---|
| 262 | "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
|
|---|
| 263 | (declare (type ring ring))
|
|---|
| 264 | (setf f-x (poly-list-add-variables f k)
|
|---|
| 265 | plist-x (mapcar #'(lambda (x)
|
|---|
| 266 | (setf (poly-termlist x)
|
|---|
| 267 | (nconc (poly-termlist x)
|
|---|
| 268 | (list (make-term :monom (make-monom :dimension d)
|
|---|
| 269 | :coeff (funcall (ring-uminus ring)
|
|---|
| 270 | (funcall (ring-unit ring)))))))
|
|---|
| 271 | x)
|
|---|
| 272 | (poly-standard-extension plist)))
|
|---|
| 273 | (append f-x plist-x))
|
|---|
| 274 |
|
|---|
| 275 |
|
|---|
| 276 | (defun polysaturation-extension (ring f plist
|
|---|
| 277 | &aux
|
|---|
| 278 | (k (length plist))
|
|---|
| 279 | (d (+ k (monom-dimension (poly-lm (car plist)))))
|
|---|
| 280 | ;; Add k variables to f
|
|---|
| 281 | (f (poly-list-add-variables f k))
|
|---|
| 282 | ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
|
|---|
| 283 | (plist (apply #'poly-append (poly-standard-extension plist))))
|
|---|
| 284 | "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
|
|---|
| 285 | ;; Add -1 as the last term
|
|---|
| 286 | (declare (type ring ring))
|
|---|
| 287 | (setf (cdr (last (poly-termlist plist)))
|
|---|
| 288 | (list (make-term :monom (make-monom :dimension d)
|
|---|
| 289 | :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
|
|---|
| 290 | (append f (list plist)))
|
|---|
| 291 |
|
|---|
| 292 | (defun saturation-extension-1 (ring f p)
|
|---|
| 293 | "Calculate [F, U*P-1]. It destructively modifies F."
|
|---|
| 294 | (declare (type ring ring))
|
|---|
| 295 | (polysaturation-extension ring f (list p)))
|
|---|
| 296 |
|
|---|
| 297 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 298 | ;;
|
|---|
| 299 | ;; Evaluation of polynomial (prefix) expressions
|
|---|
| 300 | ;;
|
|---|
| 301 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 302 |
|
|---|
| 303 | (defun coerce-coeff (ring expr vars)
|
|---|
| 304 | "Coerce an element of the coefficient ring to a constant polynomial."
|
|---|
| 305 | ;; Modular arithmetic handler by rat
|
|---|
| 306 | (declare (type ring ring))
|
|---|
| 307 | (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
|
|---|
| 308 | :coeff (funcall (ring-parse ring) expr)))
|
|---|
| 309 | 0))
|
|---|
| 310 |
|
|---|
| 311 | (defun poly-eval (expr vars
|
|---|
| 312 | &optional
|
|---|
| 313 | (ring +ring-of-integers+)
|
|---|
| 314 | (order #'lex>)
|
|---|
| 315 | (list-marker :[)
|
|---|
| 316 | &aux
|
|---|
| 317 | (ring-and-order (make-ring-and-order :ring ring :order order)))
|
|---|
| 318 | "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
|
|---|
| 319 | variables VARS. Return the resulting polynomial or list of
|
|---|
| 320 | polynomials. Standard arithmetical operators in form EXPR are
|
|---|
| 321 | replaced with their analogues in the ring of polynomials, and the
|
|---|
| 322 | resulting expression is evaluated, resulting in a polynomial or a list
|
|---|
| 323 | of polynomials in internal form. A similar operation in another computer
|
|---|
| 324 | algebra system could be called 'expand' or so."
|
|---|
| 325 | (declare (type ring ring))
|
|---|
| 326 | (labels ((p-eval (arg) (poly-eval arg vars ring order))
|
|---|
| 327 | (p-eval-scalar (arg) (poly-eval-scalar arg))
|
|---|
| 328 | (p-eval-list (args) (mapcar #'p-eval args))
|
|---|
| 329 | (p-add (x y) (poly-add ring-and-order x y)))
|
|---|
| 330 | (cond
|
|---|
| 331 | ((null expr) (error "Empty expression"))
|
|---|
| 332 | ((eql expr 0) (make-poly-zero))
|
|---|
| 333 | ((member expr vars :test #'equalp)
|
|---|
| 334 | (let ((pos (position expr vars :test #'equalp)))
|
|---|
| 335 | (make-poly-variable ring (length vars) pos)))
|
|---|
| 336 | ((atom expr)
|
|---|
| 337 | (coerce-coeff ring expr vars))
|
|---|
| 338 | ((eq (car expr) list-marker)
|
|---|
| 339 | (cons list-marker (p-eval-list (cdr expr))))
|
|---|
| 340 | (t
|
|---|
| 341 | (case (car expr)
|
|---|
| 342 | (+ (reduce #'p-add (p-eval-list (cdr expr))))
|
|---|
| 343 | (- (case (length expr)
|
|---|
| 344 | (1 (make-poly-zero))
|
|---|
| 345 | (2 (poly-uminus ring (p-eval (cadr expr))))
|
|---|
| 346 | (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
|
|---|
| 347 | (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
|
|---|
| 348 | (reduce #'p-add (p-eval-list (cddr expr)))))))
|
|---|
| 349 | (*
|
|---|
| 350 | (if (endp (cddr expr)) ;unary
|
|---|
| 351 | (p-eval (cdr expr))
|
|---|
| 352 | (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
|
|---|
| 353 | (/
|
|---|
| 354 | ;; A polynomial can be divided by a scalar
|
|---|
| 355 | (cond
|
|---|
| 356 | ((endp (cddr expr))
|
|---|
| 357 | ;; A special case (/ ?), the inverse
|
|---|
| 358 | (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
|
|---|
| 359 | (t
|
|---|
| 360 | (let ((num (p-eval (cadr expr)))
|
|---|
| 361 | (denom-inverse (apply (ring-div ring)
|
|---|
| 362 | (cons (funcall (ring-unit ring))
|
|---|
| 363 | (mapcar #'p-eval-scalar (cddr expr))))))
|
|---|
| 364 | (scalar-times-poly ring denom-inverse num)))))
|
|---|
| 365 | (expt
|
|---|
| 366 | (cond
|
|---|
| 367 | ((member (cadr expr) vars :test #'equalp)
|
|---|
| 368 | ;;Special handling of (expt var pow)
|
|---|
| 369 | (let ((pos (position (cadr expr) vars :test #'equalp)))
|
|---|
| 370 | (make-poly-variable ring (length vars) pos (caddr expr))))
|
|---|
| 371 | ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
|
|---|
| 372 | ;; Negative power means division in coefficient ring
|
|---|
| 373 | ;; Non-integer power means non-polynomial coefficient
|
|---|
| 374 | (coerce-coeff ring expr vars))
|
|---|
| 375 | (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
|
|---|
| 376 | (otherwise
|
|---|
| 377 | (coerce-coeff ring expr vars)))))))
|
|---|
| 378 |
|
|---|
| 379 | (defun poly-eval-scalar (expr
|
|---|
| 380 | &optional
|
|---|
| 381 | (ring +ring-of-integers+)
|
|---|
| 382 | &aux
|
|---|
| 383 | (order #'lex>))
|
|---|
| 384 | "Evaluate a scalar expression EXPR in ring RING."
|
|---|
| 385 | (declare (type ring ring))
|
|---|
| 386 | (poly-lc (poly-eval expr nil ring order)))
|
|---|
| 387 |
|
|---|
| 388 | (defun spoly (ring-and-order f g
|
|---|
| 389 | &aux
|
|---|
| 390 | (ring (ro-ring ring-and-order)))
|
|---|
| 391 | "It yields the S-polynomial of polynomials F and G."
|
|---|
| 392 | (declare (type ring-and-order ring-and-order) (type poly f g))
|
|---|
| 393 | (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
|
|---|
| 394 | (mf (monom-div lcm (poly-lm f)))
|
|---|
| 395 | (mg (monom-div lcm (poly-lm g))))
|
|---|
| 396 | (declare (type monom mf mg))
|
|---|
| 397 | (multiple-value-bind (c cf cg)
|
|---|
| 398 | (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
|
|---|
| 399 | (declare (ignore c))
|
|---|
| 400 | (poly-sub
|
|---|
| 401 | ring-and-order
|
|---|
| 402 | (scalar-times-poly ring cg (monom-times-poly mf f))
|
|---|
| 403 | (scalar-times-poly ring cf (monom-times-poly mg g))))))
|
|---|
| 404 |
|
|---|
| 405 |
|
|---|
| 406 | (defun poly-primitive-part (ring p)
|
|---|
| 407 | "Divide polynomial P with integer coefficients by gcd of its
|
|---|
| 408 | coefficients and return the result."
|
|---|
| 409 | (declare (type ring ring) (type poly p))
|
|---|
| 410 | (if (poly-zerop p)
|
|---|
| 411 | (values p 1)
|
|---|
| 412 | (let ((c (poly-content ring p)))
|
|---|
| 413 | (values (make-poly-from-termlist
|
|---|
| 414 | (mapcar
|
|---|
| 415 | #'(lambda (x)
|
|---|
| 416 | (make-term :monom (term-monom x)
|
|---|
| 417 | :coeff (funcall (ring-div ring) (term-coeff x) c)))
|
|---|
| 418 | (poly-termlist p))
|
|---|
| 419 | (poly-sugar p))
|
|---|
| 420 | c))))
|
|---|
| 421 |
|
|---|
| 422 | (defun poly-content (ring p)
|
|---|
| 423 | "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
|
|---|
| 424 | to compute the greatest common divisor."
|
|---|
| 425 | (declare (type ring ring) (type poly p))
|
|---|
| 426 | (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
|
|---|
| 427 |
|
|---|
| 428 | (defun read-infix-form (&key (stream t))
|
|---|
| 429 | "Parser of infix expressions with integer/rational coefficients
|
|---|
| 430 | The parser will recognize two kinds of polynomial expressions:
|
|---|
| 431 |
|
|---|
| 432 | - polynomials in fully expanded forms with coefficients
|
|---|
| 433 | written in front of symbolic expressions; constants can be optionally
|
|---|
| 434 | enclosed in (); for example, the infix form
|
|---|
| 435 | X^2-Y^2+(-4/3)*U^2*W^3-5
|
|---|
| 436 | parses to
|
|---|
| 437 | (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
|
|---|
| 438 |
|
|---|
| 439 | - lists of polynomials; for example
|
|---|
| 440 | [X-Y, X^2+3*Z]
|
|---|
| 441 | parses to
|
|---|
| 442 | (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
|
|---|
| 443 | where the first symbol [ marks a list of polynomials.
|
|---|
| 444 |
|
|---|
| 445 | -other infix expressions, for example
|
|---|
| 446 | [(X-Y)*(X+Y)/Z,(X+1)^2]
|
|---|
| 447 | parses to:
|
|---|
| 448 | (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
|
|---|
| 449 | Currently this function is implemented using M. Kantrowitz's INFIX package."
|
|---|
| 450 | (read-from-string
|
|---|
| 451 | (concatenate 'string
|
|---|
| 452 | "#I("
|
|---|
| 453 | (with-output-to-string (s)
|
|---|
| 454 | (loop
|
|---|
| 455 | (multiple-value-bind (line eof)
|
|---|
| 456 | (read-line stream t)
|
|---|
| 457 | (format s "~A" line)
|
|---|
| 458 | (when eof (return)))))
|
|---|
| 459 | ")")))
|
|---|
| 460 |
|
|---|
| 461 | (defun read-poly (vars &key
|
|---|
| 462 | (stream t)
|
|---|
| 463 | (ring +ring-of-integers+)
|
|---|
| 464 | (order #'lex>))
|
|---|
| 465 | "Reads an expression in prefix form from a stream STREAM.
|
|---|
| 466 | The expression read from the strem should represent a polynomial or a
|
|---|
| 467 | list of polynomials in variables VARS, over the ring RING. The
|
|---|
| 468 | polynomial or list of polynomials is returned, with terms in each
|
|---|
| 469 | polynomial ordered according to monomial order ORDER."
|
|---|
| 470 | (poly-eval (read-infix-form :stream stream) vars ring order))
|
|---|
| 471 |
|
|---|
| 472 | (defun string->poly (str vars
|
|---|
| 473 | &optional
|
|---|
| 474 | (ring +ring-of-integers+)
|
|---|
| 475 | (order #'lex>))
|
|---|
| 476 | "Converts a string STR to a polynomial in variables VARS."
|
|---|
| 477 | (with-input-from-string (s str)
|
|---|
| 478 | (read-poly vars :stream s :ring ring :order order)))
|
|---|
| 479 |
|
|---|
| 480 | (defun poly->alist (p)
|
|---|
| 481 | "Convert a polynomial P to an association list. Thus, the format of the
|
|---|
| 482 | returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
|
|---|
| 483 | MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
|
|---|
| 484 | corresponding coefficient in the ring."
|
|---|
| 485 | (cond
|
|---|
| 486 | ((poly-p p)
|
|---|
| 487 | (mapcar #'term->cons (poly-termlist p)))
|
|---|
| 488 | ((and (consp p) (eq (car p) :[))
|
|---|
| 489 | (cons :[ (mapcar #'poly->alist (cdr p))))))
|
|---|
| 490 |
|
|---|
| 491 | (defun string->alist (str vars
|
|---|
| 492 | &optional
|
|---|
| 493 | (ring +ring-of-integers+)
|
|---|
| 494 | (order #'lex>))
|
|---|
| 495 | "Convert a string STR representing a polynomial or polynomial list to
|
|---|
| 496 | an association list (... (MONOM . COEFF) ...)."
|
|---|
| 497 | (poly->alist (string->poly str vars ring order)))
|
|---|
| 498 |
|
|---|
| 499 | (defun poly-equal-no-sugar-p (p q)
|
|---|
| 500 | "Compare polynomials for equality, ignoring sugar."
|
|---|
| 501 | (declare (type poly p q))
|
|---|
| 502 | (equalp (poly-termlist p) (poly-termlist q)))
|
|---|
| 503 |
|
|---|
| 504 | (defun poly-set-equal-no-sugar-p (p q)
|
|---|
| 505 | "Compare polynomial sets P and Q for equality, ignoring sugar."
|
|---|
| 506 | (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
|
|---|
| 507 |
|
|---|
| 508 | (defun poly-list-equal-no-sugar-p (p q)
|
|---|
| 509 | "Compare polynomial lists P and Q for equality, ignoring sugar."
|
|---|
| 510 | (every #'poly-equal-no-sugar-p p q))
|
|---|
| 511 | |#
|
|---|