close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2916

Last change on this file since 2916 was 2916, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 18.0 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
27 (:documentation "Implements polynomials"))
28
29(in-package :polynomial)
30
31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
32
33(defclass poly ()
34 ((termlist :initarg :termlist :accessor poly-termlist
35 :documentation "List of terms.")
36 (order :initarg :order :accessor poly-term-order
37 :documentation "Monomial/term order."))
38 (:default-initargs :termlist nil :order #'lex>)
39 (:documentation "A polynomial with a list of terms TERMLIST, ordered
40according to term order ORDER, which defaults to LEX>."))
41
42(defmethod print-object ((self poly) stream)
43 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
44 (poly-termlist self)
45 (poly-term-order self)))
46
47(defmethod r-equalp ((self poly) (other poly))
48 "POLY instances are R-EQUALP if they have the same
49order and if all terms are R-EQUALP."
50 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
51 (eq (poly-term-order self) (poly-term-order other))))
52
53(defmethod insert-item ((self poly) (item term))
54 (push item (poly-termlist self))
55 self)
56
57(defmethod append-item ((self poly) (item term))
58 (setf (cdr (last (poly-termlist self))) (list item))
59 self)
60
61;; Leading term
62(defgeneric leading-term (object)
63 (:method ((self poly))
64 (car (poly-termlist self)))
65 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
66
67;; Second term
68(defgeneric second-leading-term (object)
69 (:method ((self poly))
70 (cadar (poly-termlist self)))
71 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
72
73;; Leading coefficient
74(defgeneric leading-coefficient (object)
75 (:method ((self poly))
76 (r-coeff (leading-term self)))
77 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
78
79;; Second coefficient
80(defgeneric second-leading-coefficient (object)
81 (:method ((self poly))
82 (r-coeff (second-leading-term self)))
83 (:documentation "The second leading coefficient of a polynomial. It
84 signals error for a polynomial with at most one term."))
85
86;; Testing for a zero polynomial
87(defmethod r-zerop ((self poly))
88 (null (poly-termlist self)))
89
90;; The number of terms
91(defmethod r-length ((self poly))
92 (length (poly-termlist self)))
93
94(defmethod multiply-by ((self poly) (other monom))
95 (mapc #'(lambda (term) (multiply-by term other))
96 (poly-termlist self))
97 self)
98
99(defmethod multiply-by ((self poly) (other scalar))
100 (mapc #'(lambda (term) (multiply-by term other))
101 (poly-termlist self))
102 self)
103
104
105(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
106 "Return an expression which will efficiently adds/subtracts two
107polynomials, P and Q. The addition/subtraction of coefficients is
108performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
109is supplied, it is used to negate the coefficients of Q which do not
110have a corresponding coefficient in P. The code implements an
111efficient algorithm to add two polynomials represented as sorted lists
112of terms. The code destroys both arguments, reusing the terms to build
113the result."
114 `(macrolet ((lc (x) `(r-coeff (car ,x))))
115 (do ((p ,p)
116 (q ,q)
117 r)
118 ((or (endp p) (endp q))
119 ;; NOTE: R contains the result in reverse order. Can it
120 ;; be more efficient to produce the terms in correct order?
121 (unless (endp q)
122 ;; Upon subtraction, we must change the sign of
123 ;; all coefficients in q
124 ,@(when uminus-fn
125 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
126 (setf r (nreconc r q)))
127 r)
128 (multiple-value-bind
129 (greater-p equal-p)
130 (funcall ,order-fn (car p) (car q))
131 (cond
132 (greater-p
133 (rotatef (cdr p) r p)
134 )
135 (equal-p
136 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
137 (cond
138 ((r-zerop s)
139 (setf p (cdr p))
140 )
141 (t
142 (setf (lc p) s)
143 (rotatef (cdr p) r p))))
144 (setf q (cdr q))
145 )
146 (t
147 ;;Negate the term of Q if UMINUS provided, signallig
148 ;;that we are doing subtraction
149 ,(when uminus-fn
150 `(setf (lc q) (funcall ,uminus-fn (lc q))))
151 (rotatef (cdr q) r q)))))))
152
153
154(defmacro def-add/subtract-method (add/subtract-method-name
155 uminus-method-name
156 &optional
157 (doc-string nil doc-string-supplied-p))
158 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
159 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
160 ,@(when doc-string-supplied-p `(,doc-string))
161 ;; Ensure orders are compatible
162 (unless (eq (poly-term-order self) (poly-term-order other))
163 (setf (poly-termlist other) (sort (poly-termlist other) (poly-term-order self))
164 (poly-term-order other) (poly-term-order self)))
165 (setf (poly-termlist self) (fast-add/subtract
166 (poly-termlist self) (poly-termlist other)
167 (poly-term-order self)
168 #',add/subtract-method-name
169 ,(when uminus-method-name `(function ,uminus-method-name))))
170 self))
171
172(eval-when (:compile-toplevel :load-toplevel :execute)
173
174 (def-add/subtract-method add-to nil
175 "Adds to polynomial SELF another polynomial OTHER.
176This operation destructively modifies both polynomials.
177The result is stored in SELF. This implementation does
178no consing, entirely reusing the sells of SELF and OTHER.")
179
180 (def-add/subtract-method subtract-from unary-minus
181 "Subtracts from polynomial SELF another polynomial OTHER.
182This operation destructively modifies both polynomials.
183The result is stored in SELF. This implementation does
184no consing, entirely reusing the sells of SELF and OTHER.")
185
186 )
187
188
189
190(defmethod unary-minus ((self poly))
191 "Destructively modifies the coefficients of the polynomial SELF,
192by changing their sign."
193 (mapc #'unary-minus (poly-termlist self))
194 self)
195
196(defun add-termlists (p q order-fn)
197 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
198 (fast-add/subtract p q order-fn add-to nil))
199
200
201(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
202 &optional (reverse-order nil))
203 "Multiplies term TERM by a list of term, TERMLIST.
204Takes into accound divisors of zero in the ring, by
205deleting zero terms."
206 `(mapcan #'(lambda (other-term)
207 (let ((prod (r*
208 ,(cond
209 (reverse-order
210 `(other-term ,term)
211 `(,term other-term))))))
212 (cond
213 ((r-zerop prod) nil)
214 (t (list prod)))))
215 ,termlist))
216
217(defun multiply-termlists (p q order-fn)
218 (cond
219 ((or (endp p) (endp q)) nil) ;p or q is 0 (represented by NIL)
220 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
221 ((endp (cdr p))
222 (multiply-term-by-termlist-dropping-zeros (car p) q)
223 ((endp (cdr q))
224 (multiply-term-by-termlist-dropping-zeros (car q) p t)
225 (t
226 (nconc (multiply-terms (car p) (car q))
227 (tail (add-termlists
228 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
229 (multiply-termlists (cdr p) q)
230 order-fn))))))))
231
232
233(defmethod multiply-by ((self poly) (other poly))
234 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
235 (poly-termlist other)
236 (poly-term-order self)))
237 self)
238
239
240#|
241
242
243(defun poly-standard-extension (plist &aux (k (length plist)))
244 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
245is a list of polynomials."
246 (declare (list plist) (fixnum k))
247 (labels ((incf-power (g i)
248 (dolist (x (poly-termlist g))
249 (incf (monom-elt (term-monom x) i)))
250 (incf (poly-sugar g))))
251 (setf plist (poly-list-add-variables plist k))
252 (dotimes (i k plist)
253 (incf-power (nth i plist) i))))
254
255
256
257(defun saturation-extension (ring f plist
258 &aux
259 (k (length plist))
260 (d (monom-dimension (poly-lm (car plist))))
261 f-x plist-x)
262 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
263 (declare (type ring ring))
264 (setf f-x (poly-list-add-variables f k)
265 plist-x (mapcar #'(lambda (x)
266 (setf (poly-termlist x)
267 (nconc (poly-termlist x)
268 (list (make-term :monom (make-monom :dimension d)
269 :coeff (funcall (ring-uminus ring)
270 (funcall (ring-unit ring)))))))
271 x)
272 (poly-standard-extension plist)))
273 (append f-x plist-x))
274
275
276(defun polysaturation-extension (ring f plist
277 &aux
278 (k (length plist))
279 (d (+ k (monom-dimension (poly-lm (car plist)))))
280 ;; Add k variables to f
281 (f (poly-list-add-variables f k))
282 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
283 (plist (apply #'poly-append (poly-standard-extension plist))))
284 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
285 ;; Add -1 as the last term
286 (declare (type ring ring))
287 (setf (cdr (last (poly-termlist plist)))
288 (list (make-term :monom (make-monom :dimension d)
289 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
290 (append f (list plist)))
291
292(defun saturation-extension-1 (ring f p)
293 "Calculate [F, U*P-1]. It destructively modifies F."
294 (declare (type ring ring))
295 (polysaturation-extension ring f (list p)))
296
297;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
298;;
299;; Evaluation of polynomial (prefix) expressions
300;;
301;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
302
303(defun coerce-coeff (ring expr vars)
304 "Coerce an element of the coefficient ring to a constant polynomial."
305 ;; Modular arithmetic handler by rat
306 (declare (type ring ring))
307 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
308 :coeff (funcall (ring-parse ring) expr)))
309 0))
310
311(defun poly-eval (expr vars
312 &optional
313 (ring +ring-of-integers+)
314 (order #'lex>)
315 (list-marker :[)
316 &aux
317 (ring-and-order (make-ring-and-order :ring ring :order order)))
318 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
319variables VARS. Return the resulting polynomial or list of
320polynomials. Standard arithmetical operators in form EXPR are
321replaced with their analogues in the ring of polynomials, and the
322resulting expression is evaluated, resulting in a polynomial or a list
323of polynomials in internal form. A similar operation in another computer
324algebra system could be called 'expand' or so."
325 (declare (type ring ring))
326 (labels ((p-eval (arg) (poly-eval arg vars ring order))
327 (p-eval-scalar (arg) (poly-eval-scalar arg))
328 (p-eval-list (args) (mapcar #'p-eval args))
329 (p-add (x y) (poly-add ring-and-order x y)))
330 (cond
331 ((null expr) (error "Empty expression"))
332 ((eql expr 0) (make-poly-zero))
333 ((member expr vars :test #'equalp)
334 (let ((pos (position expr vars :test #'equalp)))
335 (make-poly-variable ring (length vars) pos)))
336 ((atom expr)
337 (coerce-coeff ring expr vars))
338 ((eq (car expr) list-marker)
339 (cons list-marker (p-eval-list (cdr expr))))
340 (t
341 (case (car expr)
342 (+ (reduce #'p-add (p-eval-list (cdr expr))))
343 (- (case (length expr)
344 (1 (make-poly-zero))
345 (2 (poly-uminus ring (p-eval (cadr expr))))
346 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
347 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
348 (reduce #'p-add (p-eval-list (cddr expr)))))))
349 (*
350 (if (endp (cddr expr)) ;unary
351 (p-eval (cdr expr))
352 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
353 (/
354 ;; A polynomial can be divided by a scalar
355 (cond
356 ((endp (cddr expr))
357 ;; A special case (/ ?), the inverse
358 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
359 (t
360 (let ((num (p-eval (cadr expr)))
361 (denom-inverse (apply (ring-div ring)
362 (cons (funcall (ring-unit ring))
363 (mapcar #'p-eval-scalar (cddr expr))))))
364 (scalar-times-poly ring denom-inverse num)))))
365 (expt
366 (cond
367 ((member (cadr expr) vars :test #'equalp)
368 ;;Special handling of (expt var pow)
369 (let ((pos (position (cadr expr) vars :test #'equalp)))
370 (make-poly-variable ring (length vars) pos (caddr expr))))
371 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
372 ;; Negative power means division in coefficient ring
373 ;; Non-integer power means non-polynomial coefficient
374 (coerce-coeff ring expr vars))
375 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
376 (otherwise
377 (coerce-coeff ring expr vars)))))))
378
379(defun poly-eval-scalar (expr
380 &optional
381 (ring +ring-of-integers+)
382 &aux
383 (order #'lex>))
384 "Evaluate a scalar expression EXPR in ring RING."
385 (declare (type ring ring))
386 (poly-lc (poly-eval expr nil ring order)))
387
388(defun spoly (ring-and-order f g
389 &aux
390 (ring (ro-ring ring-and-order)))
391 "It yields the S-polynomial of polynomials F and G."
392 (declare (type ring-and-order ring-and-order) (type poly f g))
393 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
394 (mf (monom-div lcm (poly-lm f)))
395 (mg (monom-div lcm (poly-lm g))))
396 (declare (type monom mf mg))
397 (multiple-value-bind (c cf cg)
398 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
399 (declare (ignore c))
400 (poly-sub
401 ring-and-order
402 (scalar-times-poly ring cg (monom-times-poly mf f))
403 (scalar-times-poly ring cf (monom-times-poly mg g))))))
404
405
406(defun poly-primitive-part (ring p)
407 "Divide polynomial P with integer coefficients by gcd of its
408coefficients and return the result."
409 (declare (type ring ring) (type poly p))
410 (if (poly-zerop p)
411 (values p 1)
412 (let ((c (poly-content ring p)))
413 (values (make-poly-from-termlist
414 (mapcar
415 #'(lambda (x)
416 (make-term :monom (term-monom x)
417 :coeff (funcall (ring-div ring) (term-coeff x) c)))
418 (poly-termlist p))
419 (poly-sugar p))
420 c))))
421
422(defun poly-content (ring p)
423 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
424to compute the greatest common divisor."
425 (declare (type ring ring) (type poly p))
426 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
427
428(defun read-infix-form (&key (stream t))
429 "Parser of infix expressions with integer/rational coefficients
430The parser will recognize two kinds of polynomial expressions:
431
432- polynomials in fully expanded forms with coefficients
433 written in front of symbolic expressions; constants can be optionally
434 enclosed in (); for example, the infix form
435 X^2-Y^2+(-4/3)*U^2*W^3-5
436 parses to
437 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
438
439- lists of polynomials; for example
440 [X-Y, X^2+3*Z]
441 parses to
442 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
443 where the first symbol [ marks a list of polynomials.
444
445-other infix expressions, for example
446 [(X-Y)*(X+Y)/Z,(X+1)^2]
447parses to:
448 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
449Currently this function is implemented using M. Kantrowitz's INFIX package."
450 (read-from-string
451 (concatenate 'string
452 "#I("
453 (with-output-to-string (s)
454 (loop
455 (multiple-value-bind (line eof)
456 (read-line stream t)
457 (format s "~A" line)
458 (when eof (return)))))
459 ")")))
460
461(defun read-poly (vars &key
462 (stream t)
463 (ring +ring-of-integers+)
464 (order #'lex>))
465 "Reads an expression in prefix form from a stream STREAM.
466The expression read from the strem should represent a polynomial or a
467list of polynomials in variables VARS, over the ring RING. The
468polynomial or list of polynomials is returned, with terms in each
469polynomial ordered according to monomial order ORDER."
470 (poly-eval (read-infix-form :stream stream) vars ring order))
471
472(defun string->poly (str vars
473 &optional
474 (ring +ring-of-integers+)
475 (order #'lex>))
476 "Converts a string STR to a polynomial in variables VARS."
477 (with-input-from-string (s str)
478 (read-poly vars :stream s :ring ring :order order)))
479
480(defun poly->alist (p)
481 "Convert a polynomial P to an association list. Thus, the format of the
482returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
483MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
484corresponding coefficient in the ring."
485 (cond
486 ((poly-p p)
487 (mapcar #'term->cons (poly-termlist p)))
488 ((and (consp p) (eq (car p) :[))
489 (cons :[ (mapcar #'poly->alist (cdr p))))))
490
491(defun string->alist (str vars
492 &optional
493 (ring +ring-of-integers+)
494 (order #'lex>))
495 "Convert a string STR representing a polynomial or polynomial list to
496an association list (... (MONOM . COEFF) ...)."
497 (poly->alist (string->poly str vars ring order)))
498
499(defun poly-equal-no-sugar-p (p q)
500 "Compare polynomials for equality, ignoring sugar."
501 (declare (type poly p q))
502 (equalp (poly-termlist p) (poly-termlist q)))
503
504(defun poly-set-equal-no-sugar-p (p q)
505 "Compare polynomial sets P and Q for equality, ignoring sugar."
506 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
507
508(defun poly-list-equal-no-sugar-p (p q)
509 "Compare polynomial lists P and Q for equality, ignoring sugar."
510 (every #'poly-equal-no-sugar-p p q))
511|#
Note: See TracBrowser for help on using the repository browser.