close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2689

Last change on this file since 2689 was 2684, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 15.4 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
27 (:documentation "Implements polynomials"))
28
29(in-package :polynomial)
30
31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
32
33(defclass poly ()
34 ((termlist :initarg :termlist :accessor poly-termlist)
35 (order :initarg :order :accessor poly-term-order))
36 (:default-initargs :termlist nil :order #'lex>))
37
38(defmethod print-object ((self poly) stream)
39 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
40 (poly-termlist self)
41 (poly-term-order self)))
42
43(defmethod r-equalp ((self poly) (other poly))
44 "POLY instances are R-EQUALP if they have the same
45order and if all terms are R-EQUALP."
46 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
47 (eq (poly-term-order self) (poly-term-order other))))
48
49(defmethod insert-item ((self poly) (item term))
50 (push item (poly-termlist self))
51 self)
52
53(defmethod append-item ((self poly) (item term))
54 (setf (cdr (last (poly-termlist self))) (list item))
55 self)
56
57;; Leading term
58(defgeneric leading-term (object)
59 (:method ((self poly))
60 (car (poly-termlist self)))
61 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
62
63;; Second term
64(defgeneric second-leading-term (object)
65 (:method ((self poly))
66 (cadar (poly-termlist self)))
67 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
68
69;; Leading coefficient
70(defgeneric leading-coefficient (object)
71 (:method ((self poly))
72 (r-coeff (leading-term self)))
73 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
74
75;; Second coefficient
76(defgeneric second-leading-coefficient (object)
77 (:method ((self poly))
78 (r-coeff (second-leading-term self)))
79 (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
80
81;; Testing for a zero polynomial
82(defmethod r-zerop ((self poly))
83 (null (poly-termlist self)))
84
85;; The number of terms
86(defmethod r-length ((self poly))
87 (length (poly-termlist self)))
88
89(defmethod multiply-by ((self poly) (other monom))
90 (mapc #'(lambda (term) (multiply-by term other))
91 (poly-termlist self))
92 self)
93
94(defmethod multiply-by ((self poly) (other scalar))
95 (mapc #'(lambda (term) (multiply-by term other))
96 (poly-termlist self))
97 self)
98
99
100(defun fast-addition (p q order-fn add-fun)
101 "Returns the sum of two polynomials. Implements an efficient
102algorithm to add two polynomials represented as sorted lists of
103terms. This function destroys both arguments, reusing the terms to
104build the result."
105 (macrolet ((lc (x) `(r-coeff (car ,x))))
106 (do ((p p)
107 (q q)
108 r)
109 ((or (endp p) (endp q))
110 ;; NOTE: R contains the result in reverse order. Can it
111 ;; be more efficient to produce the terms in correct order?
112 (unless (endp q) (setf r (nreconc r q)))
113 r)
114 (multiple-value-bind
115 (greater-p equal-p)
116 (funcall order-fn (car p) (car q))
117 (cond
118 (greater-p
119 (rotatef (cdr p) r p)
120 )
121 (equal-p
122 (let ((s (funcall add-fun (lc p) (lc q))))
123 (cond
124 ((r-zerop s)
125 (setf p (cdr p))
126 )
127 (t
128 (setf (lc p) s)
129 (rotatef (cdr p) r p))))
130 (setf q (cdr q))
131 )
132 (t
133 (rotatef (cdr q) r q)))))))
134
135
136(defmacro def-additive-operation-method (method-name &optional (doc-string nil doc-string-supplied-p))
137 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
138 `(defmethod ,method-name ((self poly) (other poly))
139 ,@(when doc-string-supplied-p `(,doc-string))
140 (with-slots ((termlist1 termlist) (order1 order))
141 self
142 (with-slots ((termlist2 termlist) (order2 order))
143 other
144 ;; Ensure orders are compatible
145 (unless (eq order1 order2)
146 (setf termlist2 (sort termlist2 order1)
147 order2 order1))
148 (setf termlist1 (fast-addition termlist1 termlist2 order1 #',method-name))))
149 self))
150
151(def-additive-operation-method add-to
152 "Adds to polynomial SELF another polynomial OTHER.
153This operation destructively modifies both polynomials.
154The result is stored in SELF. This implementation does
155no consing, entirely reusing the sells of SELF and OTHER.")
156
157(def-additive-operation-method subtract-from
158 "Subtracts from polynomial SELF another polynomial OTHER.
159This operation destructively modifies both polynomials.
160The result is stored in SELF. This implementation does
161no consing, entirely reusing the sells of SELF and OTHER.")
162
163(defmethod unary-uminus ((self poly))
164 (mapc #'unary-uminus (poly-termlist self))
165 self)
166
167#|
168
169(defun poly-standard-extension (plist &aux (k (length plist)))
170 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
171 (declare (list plist) (fixnum k))
172 (labels ((incf-power (g i)
173 (dolist (x (poly-termlist g))
174 (incf (monom-elt (term-monom x) i)))
175 (incf (poly-sugar g))))
176 (setf plist (poly-list-add-variables plist k))
177 (dotimes (i k plist)
178 (incf-power (nth i plist) i))))
179
180(defun saturation-extension (ring f plist
181 &aux
182 (k (length plist))
183 (d (monom-dimension (poly-lm (car plist))))
184 f-x plist-x)
185 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
186 (declare (type ring ring))
187 (setf f-x (poly-list-add-variables f k)
188 plist-x (mapcar #'(lambda (x)
189 (setf (poly-termlist x)
190 (nconc (poly-termlist x)
191 (list (make-term :monom (make-monom :dimension d)
192 :coeff (funcall (ring-uminus ring)
193 (funcall (ring-unit ring)))))))
194 x)
195 (poly-standard-extension plist)))
196 (append f-x plist-x))
197
198
199(defun polysaturation-extension (ring f plist
200 &aux
201 (k (length plist))
202 (d (+ k (monom-dimension (poly-lm (car plist)))))
203 ;; Add k variables to f
204 (f (poly-list-add-variables f k))
205 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
206 (plist (apply #'poly-append (poly-standard-extension plist))))
207 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
208 ;; Add -1 as the last term
209 (declare (type ring ring))
210 (setf (cdr (last (poly-termlist plist)))
211 (list (make-term :monom (make-monom :dimension d)
212 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
213 (append f (list plist)))
214
215(defun saturation-extension-1 (ring f p)
216 "Calculate [F, U*P-1]. It destructively modifies F."
217 (declare (type ring ring))
218 (polysaturation-extension ring f (list p)))
219
220;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
221;;
222;; Evaluation of polynomial (prefix) expressions
223;;
224;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
225
226(defun coerce-coeff (ring expr vars)
227 "Coerce an element of the coefficient ring to a constant polynomial."
228 ;; Modular arithmetic handler by rat
229 (declare (type ring ring))
230 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
231 :coeff (funcall (ring-parse ring) expr)))
232 0))
233
234(defun poly-eval (expr vars
235 &optional
236 (ring +ring-of-integers+)
237 (order #'lex>)
238 (list-marker :[)
239 &aux
240 (ring-and-order (make-ring-and-order :ring ring :order order)))
241 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
242variables VARS. Return the resulting polynomial or list of
243polynomials. Standard arithmetical operators in form EXPR are
244replaced with their analogues in the ring of polynomials, and the
245resulting expression is evaluated, resulting in a polynomial or a list
246of polynomials in internal form. A similar operation in another computer
247algebra system could be called 'expand' or so."
248 (declare (type ring ring))
249 (labels ((p-eval (arg) (poly-eval arg vars ring order))
250 (p-eval-scalar (arg) (poly-eval-scalar arg))
251 (p-eval-list (args) (mapcar #'p-eval args))
252 (p-add (x y) (poly-add ring-and-order x y)))
253 (cond
254 ((null expr) (error "Empty expression"))
255 ((eql expr 0) (make-poly-zero))
256 ((member expr vars :test #'equalp)
257 (let ((pos (position expr vars :test #'equalp)))
258 (make-poly-variable ring (length vars) pos)))
259 ((atom expr)
260 (coerce-coeff ring expr vars))
261 ((eq (car expr) list-marker)
262 (cons list-marker (p-eval-list (cdr expr))))
263 (t
264 (case (car expr)
265 (+ (reduce #'p-add (p-eval-list (cdr expr))))
266 (- (case (length expr)
267 (1 (make-poly-zero))
268 (2 (poly-uminus ring (p-eval (cadr expr))))
269 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
270 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
271 (reduce #'p-add (p-eval-list (cddr expr)))))))
272 (*
273 (if (endp (cddr expr)) ;unary
274 (p-eval (cdr expr))
275 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
276 (/
277 ;; A polynomial can be divided by a scalar
278 (cond
279 ((endp (cddr expr))
280 ;; A special case (/ ?), the inverse
281 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
282 (t
283 (let ((num (p-eval (cadr expr)))
284 (denom-inverse (apply (ring-div ring)
285 (cons (funcall (ring-unit ring))
286 (mapcar #'p-eval-scalar (cddr expr))))))
287 (scalar-times-poly ring denom-inverse num)))))
288 (expt
289 (cond
290 ((member (cadr expr) vars :test #'equalp)
291 ;;Special handling of (expt var pow)
292 (let ((pos (position (cadr expr) vars :test #'equalp)))
293 (make-poly-variable ring (length vars) pos (caddr expr))))
294 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
295 ;; Negative power means division in coefficient ring
296 ;; Non-integer power means non-polynomial coefficient
297 (coerce-coeff ring expr vars))
298 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
299 (otherwise
300 (coerce-coeff ring expr vars)))))))
301
302(defun poly-eval-scalar (expr
303 &optional
304 (ring +ring-of-integers+)
305 &aux
306 (order #'lex>))
307 "Evaluate a scalar expression EXPR in ring RING."
308 (declare (type ring ring))
309 (poly-lc (poly-eval expr nil ring order)))
310
311(defun spoly (ring-and-order f g
312 &aux
313 (ring (ro-ring ring-and-order)))
314 "It yields the S-polynomial of polynomials F and G."
315 (declare (type ring-and-order ring-and-order) (type poly f g))
316 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
317 (mf (monom-div lcm (poly-lm f)))
318 (mg (monom-div lcm (poly-lm g))))
319 (declare (type monom mf mg))
320 (multiple-value-bind (c cf cg)
321 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
322 (declare (ignore c))
323 (poly-sub
324 ring-and-order
325 (scalar-times-poly ring cg (monom-times-poly mf f))
326 (scalar-times-poly ring cf (monom-times-poly mg g))))))
327
328
329(defun poly-primitive-part (ring p)
330 "Divide polynomial P with integer coefficients by gcd of its
331coefficients and return the result."
332 (declare (type ring ring) (type poly p))
333 (if (poly-zerop p)
334 (values p 1)
335 (let ((c (poly-content ring p)))
336 (values (make-poly-from-termlist
337 (mapcar
338 #'(lambda (x)
339 (make-term :monom (term-monom x)
340 :coeff (funcall (ring-div ring) (term-coeff x) c)))
341 (poly-termlist p))
342 (poly-sugar p))
343 c))))
344
345(defun poly-content (ring p)
346 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
347to compute the greatest common divisor."
348 (declare (type ring ring) (type poly p))
349 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
350
351(defun read-infix-form (&key (stream t))
352 "Parser of infix expressions with integer/rational coefficients
353The parser will recognize two kinds of polynomial expressions:
354
355- polynomials in fully expanded forms with coefficients
356 written in front of symbolic expressions; constants can be optionally
357 enclosed in (); for example, the infix form
358 X^2-Y^2+(-4/3)*U^2*W^3-5
359 parses to
360 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
361
362- lists of polynomials; for example
363 [X-Y, X^2+3*Z]
364 parses to
365 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
366 where the first symbol [ marks a list of polynomials.
367
368-other infix expressions, for example
369 [(X-Y)*(X+Y)/Z,(X+1)^2]
370parses to:
371 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
372Currently this function is implemented using M. Kantrowitz's INFIX package."
373 (read-from-string
374 (concatenate 'string
375 "#I("
376 (with-output-to-string (s)
377 (loop
378 (multiple-value-bind (line eof)
379 (read-line stream t)
380 (format s "~A" line)
381 (when eof (return)))))
382 ")")))
383
384(defun read-poly (vars &key
385 (stream t)
386 (ring +ring-of-integers+)
387 (order #'lex>))
388 "Reads an expression in prefix form from a stream STREAM.
389The expression read from the strem should represent a polynomial or a
390list of polynomials in variables VARS, over the ring RING. The
391polynomial or list of polynomials is returned, with terms in each
392polynomial ordered according to monomial order ORDER."
393 (poly-eval (read-infix-form :stream stream) vars ring order))
394
395(defun string->poly (str vars
396 &optional
397 (ring +ring-of-integers+)
398 (order #'lex>))
399 "Converts a string STR to a polynomial in variables VARS."
400 (with-input-from-string (s str)
401 (read-poly vars :stream s :ring ring :order order)))
402
403(defun poly->alist (p)
404 "Convert a polynomial P to an association list. Thus, the format of the
405returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
406MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
407corresponding coefficient in the ring."
408 (cond
409 ((poly-p p)
410 (mapcar #'term->cons (poly-termlist p)))
411 ((and (consp p) (eq (car p) :[))
412 (cons :[ (mapcar #'poly->alist (cdr p))))))
413
414(defun string->alist (str vars
415 &optional
416 (ring +ring-of-integers+)
417 (order #'lex>))
418 "Convert a string STR representing a polynomial or polynomial list to
419an association list (... (MONOM . COEFF) ...)."
420 (poly->alist (string->poly str vars ring order)))
421
422(defun poly-equal-no-sugar-p (p q)
423 "Compare polynomials for equality, ignoring sugar."
424 (declare (type poly p q))
425 (equalp (poly-termlist p) (poly-termlist q)))
426
427(defun poly-set-equal-no-sugar-p (p q)
428 "Compare polynomial sets P and Q for equality, ignoring sugar."
429 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
430
431(defun poly-list-equal-no-sugar-p (p q)
432 "Compare polynomial lists P and Q for equality, ignoring sugar."
433 (every #'poly-equal-no-sugar-p p q))
434|#
Note: See TracBrowser for help on using the repository browser.