close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2682

Last change on this file since 2682 was 2682, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 15.3 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
27 (:documentation "Implements polynomials"))
28
29(in-package :polynomial)
30
31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
32
33(defclass poly ()
34 ((termlist :initarg :termlist :accessor poly-termlist)
35 (order :initarg :order :accessor poly-term-order))
36 (:default-initargs :termlist nil :order #'lex>))
37
38(defmethod print-object ((self poly) stream)
39 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
40 (poly-termlist self)
41 (poly-term-order self)))
42
43(defmethod r-equalp ((self poly) (other poly))
44 "POLY instances are R-EQUALP if they have the same
45order and if all terms are R-EQUALP."
46 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
47 (eq (poly-term-order self) (poly-term-order other))))
48
49(defmethod insert-item ((self poly) (item term))
50 (push item (poly-termlist self))
51 self)
52
53(defmethod append-item ((self poly) (item term))
54 (setf (cdr (last (poly-termlist self))) (list item))
55 self)
56
57;; Leading term
58(defgeneric leading-term (object)
59 (:method ((self poly))
60 (car (poly-termlist self)))
61 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
62
63;; Second term
64(defgeneric second-leading-term (object)
65 (:method ((self poly))
66 (cadar (poly-termlist self)))
67 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
68
69;; Leading coefficient
70(defgeneric leading-coefficient (object)
71 (:method ((self poly))
72 (r-coeff (leading-term self)))
73 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
74
75;; Second coefficient
76(defgeneric second-leading-coefficient (object)
77 (:method ((self poly))
78 (r-coeff (second-leading-term self)))
79 (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
80
81;; Testing for a zero polynomial
82(defmethod r-zerop ((self poly))
83 (null (poly-termlist self)))
84
85;; The number of terms
86(defmethod r-length ((self poly))
87 (length (poly-termlist self)))
88
89(defmethod multiply-by ((self poly) (other monom))
90 (mapc #'(lambda (term) (multiply-by term other))
91 (poly-termlist self))
92 self)
93
94(defmethod multiply-by ((self poly) (other scalar))
95 (mapc #'(lambda (term) (multiply-by term other))
96 (poly-termlist self))
97 self)
98
99
100(defun fast-addition (p q order-fn add-fun)
101 "Returns the sum of two polynomials. Implements an efficient
102algorithm to add two polynomials represented as sorted lists of
103terms. This function destroys both arguments, reusing the terms to
104build the result."
105 (macrolet ((lc (x) `(r-coeff (car ,x))))
106 (do ((p p)
107 (q q)
108 r)
109 ((or (endp p) (endp q))
110 ;; NOTE: R contains the result in reverse order. Can it
111 ;; be more efficient to produce the terms in correct order?
112 (unless (endp q) (setf r (nreconc r q)))
113 r)
114 (multiple-value-bind
115 (greater-p equal-p)
116 (funcall order-fn (car p) (car q))
117 (cond
118 (greater-p
119 (rotatef (cdr p) r p)
120 )
121 (equal-p
122 (let ((s (funcall add-fun (lc p) (lc q))))
123 (cond
124 ((r-zerop s)
125 (setf p (cdr p))
126 )
127 (t
128 (setf (lc p) s)
129 (rotatef (cdr p) r p))))
130 (setf q (cdr q))
131 )
132 (t
133 (rotatef (cdr q) r q)))))))
134
135
136(defmacro def-additive-operation-method (method-name &optional (doc-string nil doc-string-supplied-p))
137 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
138 `(defmethod ,method-name ((self poly) (other poly))
139 ,@(when doc-string-supplied-p `(,doc-string))
140 (with-slots ((termlist1 termlist) (order1 order))
141 self
142 (with-slots ((termlist2 termlist) (order2 order))
143 other
144 ;; Ensure orders are compatible
145 (unless (eq order1 order2)
146 (setf termlist2 (sort termlist2 order1)
147 order2 order1))
148 (setf termlist1 (fast-addition termlist1 termlist2 order1 #',method-name))))
149 self))
150
151(def-additive-operation-method add-to
152 "Adds to polynomial SELF another polynomial OTHER.
153This operation destructively modifies both polynomials.
154The result is stored in SELF. This implementation does
155no consing, entirely reusing the sells of SELF and OTHER.")
156
157(def-additive-operation-method subtract-from
158 "Subtracts from polynomial SELF another polynomial OTHER.
159This operation destructively modifies both polynomials.
160The result is stored in SELF. This implementation does
161no consing, entirely reusing the sells of SELF and OTHER.")
162
163(defmethod unary-uminus ((self poly)))
164
165#|
166
167(defun poly-standard-extension (plist &aux (k (length plist)))
168 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
169 (declare (list plist) (fixnum k))
170 (labels ((incf-power (g i)
171 (dolist (x (poly-termlist g))
172 (incf (monom-elt (term-monom x) i)))
173 (incf (poly-sugar g))))
174 (setf plist (poly-list-add-variables plist k))
175 (dotimes (i k plist)
176 (incf-power (nth i plist) i))))
177
178(defun saturation-extension (ring f plist
179 &aux
180 (k (length plist))
181 (d (monom-dimension (poly-lm (car plist))))
182 f-x plist-x)
183 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
184 (declare (type ring ring))
185 (setf f-x (poly-list-add-variables f k)
186 plist-x (mapcar #'(lambda (x)
187 (setf (poly-termlist x)
188 (nconc (poly-termlist x)
189 (list (make-term :monom (make-monom :dimension d)
190 :coeff (funcall (ring-uminus ring)
191 (funcall (ring-unit ring)))))))
192 x)
193 (poly-standard-extension plist)))
194 (append f-x plist-x))
195
196
197(defun polysaturation-extension (ring f plist
198 &aux
199 (k (length plist))
200 (d (+ k (monom-dimension (poly-lm (car plist)))))
201 ;; Add k variables to f
202 (f (poly-list-add-variables f k))
203 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
204 (plist (apply #'poly-append (poly-standard-extension plist))))
205 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
206 ;; Add -1 as the last term
207 (declare (type ring ring))
208 (setf (cdr (last (poly-termlist plist)))
209 (list (make-term :monom (make-monom :dimension d)
210 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
211 (append f (list plist)))
212
213(defun saturation-extension-1 (ring f p)
214 "Calculate [F, U*P-1]. It destructively modifies F."
215 (declare (type ring ring))
216 (polysaturation-extension ring f (list p)))
217
218;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
219;;
220;; Evaluation of polynomial (prefix) expressions
221;;
222;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
223
224(defun coerce-coeff (ring expr vars)
225 "Coerce an element of the coefficient ring to a constant polynomial."
226 ;; Modular arithmetic handler by rat
227 (declare (type ring ring))
228 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
229 :coeff (funcall (ring-parse ring) expr)))
230 0))
231
232(defun poly-eval (expr vars
233 &optional
234 (ring +ring-of-integers+)
235 (order #'lex>)
236 (list-marker :[)
237 &aux
238 (ring-and-order (make-ring-and-order :ring ring :order order)))
239 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
240variables VARS. Return the resulting polynomial or list of
241polynomials. Standard arithmetical operators in form EXPR are
242replaced with their analogues in the ring of polynomials, and the
243resulting expression is evaluated, resulting in a polynomial or a list
244of polynomials in internal form. A similar operation in another computer
245algebra system could be called 'expand' or so."
246 (declare (type ring ring))
247 (labels ((p-eval (arg) (poly-eval arg vars ring order))
248 (p-eval-scalar (arg) (poly-eval-scalar arg))
249 (p-eval-list (args) (mapcar #'p-eval args))
250 (p-add (x y) (poly-add ring-and-order x y)))
251 (cond
252 ((null expr) (error "Empty expression"))
253 ((eql expr 0) (make-poly-zero))
254 ((member expr vars :test #'equalp)
255 (let ((pos (position expr vars :test #'equalp)))
256 (make-poly-variable ring (length vars) pos)))
257 ((atom expr)
258 (coerce-coeff ring expr vars))
259 ((eq (car expr) list-marker)
260 (cons list-marker (p-eval-list (cdr expr))))
261 (t
262 (case (car expr)
263 (+ (reduce #'p-add (p-eval-list (cdr expr))))
264 (- (case (length expr)
265 (1 (make-poly-zero))
266 (2 (poly-uminus ring (p-eval (cadr expr))))
267 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
268 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
269 (reduce #'p-add (p-eval-list (cddr expr)))))))
270 (*
271 (if (endp (cddr expr)) ;unary
272 (p-eval (cdr expr))
273 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
274 (/
275 ;; A polynomial can be divided by a scalar
276 (cond
277 ((endp (cddr expr))
278 ;; A special case (/ ?), the inverse
279 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
280 (t
281 (let ((num (p-eval (cadr expr)))
282 (denom-inverse (apply (ring-div ring)
283 (cons (funcall (ring-unit ring))
284 (mapcar #'p-eval-scalar (cddr expr))))))
285 (scalar-times-poly ring denom-inverse num)))))
286 (expt
287 (cond
288 ((member (cadr expr) vars :test #'equalp)
289 ;;Special handling of (expt var pow)
290 (let ((pos (position (cadr expr) vars :test #'equalp)))
291 (make-poly-variable ring (length vars) pos (caddr expr))))
292 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
293 ;; Negative power means division in coefficient ring
294 ;; Non-integer power means non-polynomial coefficient
295 (coerce-coeff ring expr vars))
296 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
297 (otherwise
298 (coerce-coeff ring expr vars)))))))
299
300(defun poly-eval-scalar (expr
301 &optional
302 (ring +ring-of-integers+)
303 &aux
304 (order #'lex>))
305 "Evaluate a scalar expression EXPR in ring RING."
306 (declare (type ring ring))
307 (poly-lc (poly-eval expr nil ring order)))
308
309(defun spoly (ring-and-order f g
310 &aux
311 (ring (ro-ring ring-and-order)))
312 "It yields the S-polynomial of polynomials F and G."
313 (declare (type ring-and-order ring-and-order) (type poly f g))
314 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
315 (mf (monom-div lcm (poly-lm f)))
316 (mg (monom-div lcm (poly-lm g))))
317 (declare (type monom mf mg))
318 (multiple-value-bind (c cf cg)
319 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
320 (declare (ignore c))
321 (poly-sub
322 ring-and-order
323 (scalar-times-poly ring cg (monom-times-poly mf f))
324 (scalar-times-poly ring cf (monom-times-poly mg g))))))
325
326
327(defun poly-primitive-part (ring p)
328 "Divide polynomial P with integer coefficients by gcd of its
329coefficients and return the result."
330 (declare (type ring ring) (type poly p))
331 (if (poly-zerop p)
332 (values p 1)
333 (let ((c (poly-content ring p)))
334 (values (make-poly-from-termlist
335 (mapcar
336 #'(lambda (x)
337 (make-term :monom (term-monom x)
338 :coeff (funcall (ring-div ring) (term-coeff x) c)))
339 (poly-termlist p))
340 (poly-sugar p))
341 c))))
342
343(defun poly-content (ring p)
344 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
345to compute the greatest common divisor."
346 (declare (type ring ring) (type poly p))
347 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
348
349(defun read-infix-form (&key (stream t))
350 "Parser of infix expressions with integer/rational coefficients
351The parser will recognize two kinds of polynomial expressions:
352
353- polynomials in fully expanded forms with coefficients
354 written in front of symbolic expressions; constants can be optionally
355 enclosed in (); for example, the infix form
356 X^2-Y^2+(-4/3)*U^2*W^3-5
357 parses to
358 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
359
360- lists of polynomials; for example
361 [X-Y, X^2+3*Z]
362 parses to
363 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
364 where the first symbol [ marks a list of polynomials.
365
366-other infix expressions, for example
367 [(X-Y)*(X+Y)/Z,(X+1)^2]
368parses to:
369 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
370Currently this function is implemented using M. Kantrowitz's INFIX package."
371 (read-from-string
372 (concatenate 'string
373 "#I("
374 (with-output-to-string (s)
375 (loop
376 (multiple-value-bind (line eof)
377 (read-line stream t)
378 (format s "~A" line)
379 (when eof (return)))))
380 ")")))
381
382(defun read-poly (vars &key
383 (stream t)
384 (ring +ring-of-integers+)
385 (order #'lex>))
386 "Reads an expression in prefix form from a stream STREAM.
387The expression read from the strem should represent a polynomial or a
388list of polynomials in variables VARS, over the ring RING. The
389polynomial or list of polynomials is returned, with terms in each
390polynomial ordered according to monomial order ORDER."
391 (poly-eval (read-infix-form :stream stream) vars ring order))
392
393(defun string->poly (str vars
394 &optional
395 (ring +ring-of-integers+)
396 (order #'lex>))
397 "Converts a string STR to a polynomial in variables VARS."
398 (with-input-from-string (s str)
399 (read-poly vars :stream s :ring ring :order order)))
400
401(defun poly->alist (p)
402 "Convert a polynomial P to an association list. Thus, the format of the
403returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
404MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
405corresponding coefficient in the ring."
406 (cond
407 ((poly-p p)
408 (mapcar #'term->cons (poly-termlist p)))
409 ((and (consp p) (eq (car p) :[))
410 (cons :[ (mapcar #'poly->alist (cdr p))))))
411
412(defun string->alist (str vars
413 &optional
414 (ring +ring-of-integers+)
415 (order #'lex>))
416 "Convert a string STR representing a polynomial or polynomial list to
417an association list (... (MONOM . COEFF) ...)."
418 (poly->alist (string->poly str vars ring order)))
419
420(defun poly-equal-no-sugar-p (p q)
421 "Compare polynomials for equality, ignoring sugar."
422 (declare (type poly p q))
423 (equalp (poly-termlist p) (poly-termlist q)))
424
425(defun poly-set-equal-no-sugar-p (p q)
426 "Compare polynomial sets P and Q for equality, ignoring sugar."
427 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
428
429(defun poly-list-equal-no-sugar-p (p q)
430 "Compare polynomial lists P and Q for equality, ignoring sugar."
431 (every #'poly-equal-no-sugar-p p q))
432|#
Note: See TracBrowser for help on using the repository browser.