| 1 | ;;; -*-  Mode: Lisp -*- 
 | 
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
| 3 | ;;;                                                                              
 | 
|---|
| 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>          
 | 
|---|
| 5 | ;;;                                                                              
 | 
|---|
| 6 | ;;;  This program is free software; you can redistribute it and/or modify        
 | 
|---|
| 7 | ;;;  it under the terms of the GNU General Public License as published by        
 | 
|---|
| 8 | ;;;  the Free Software Foundation; either version 2 of the License, or           
 | 
|---|
| 9 | ;;;  (at your option) any later version.                                         
 | 
|---|
| 10 | ;;;                                                                              
 | 
|---|
| 11 | ;;;  This program is distributed in the hope that it will be useful,             
 | 
|---|
| 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of              
 | 
|---|
| 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               
 | 
|---|
| 14 | ;;;  GNU General Public License for more details.                                
 | 
|---|
| 15 | ;;;                                                                              
 | 
|---|
| 16 | ;;;  You should have received a copy of the GNU General Public License           
 | 
|---|
| 17 | ;;;  along with this program; if not, write to the Free Software                 
 | 
|---|
| 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  
 | 
|---|
| 19 | ;;;                                                                              
 | 
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
| 21 | 
 | 
|---|
| 22 | (defpackage "POLYNOMIAL"
 | 
|---|
| 23 |   (:use :cl :ring :monom :order :term #| :infix |# )
 | 
|---|
| 24 |   (:export "POLY"
 | 
|---|
| 25 |            "POLY-TERMLIST"
 | 
|---|
| 26 |            "POLY-TERM-ORDER")
 | 
|---|
| 27 |   (:documentation "Implements polynomials"))
 | 
|---|
| 28 | 
 | 
|---|
| 29 | (in-package :polynomial)
 | 
|---|
| 30 | 
 | 
|---|
| 31 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
 | 
|---|
| 32 | 
 | 
|---|
| 33 | (defclass poly ()
 | 
|---|
| 34 |   ((termlist :initarg :termlist :accessor poly-termlist)
 | 
|---|
| 35 |    (order :initarg :order :accessor poly-term-order))
 | 
|---|
| 36 |   (:default-initargs :termlist nil :order #'lex>))
 | 
|---|
| 37 | 
 | 
|---|
| 38 | (defmethod print-object ((self poly) stream)
 | 
|---|
| 39 |   (format stream "#<POLY TERMLIST=~A ORDER=~A>" 
 | 
|---|
| 40 |           (poly-termlist self)
 | 
|---|
| 41 |           (poly-term-order self)))
 | 
|---|
| 42 | 
 | 
|---|
| 43 | (defmethod r-equalp ((self poly) (other poly))
 | 
|---|
| 44 |   (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
 | 
|---|
| 45 |        (eq (poly-term-order self) (poly-term-order other))))
 | 
|---|
| 46 | 
 | 
|---|
| 47 | (defmethod insert-item ((self poly) (item term))
 | 
|---|
| 48 |   (push item (poly-termlist self))
 | 
|---|
| 49 |   self)
 | 
|---|
| 50 | 
 | 
|---|
| 51 | (defmethod append-item ((self poly) (item term))
 | 
|---|
| 52 |   (setf (cdr (last (poly-termlist self))) (list item))
 | 
|---|
| 53 |   self)
 | 
|---|
| 54 | 
 | 
|---|
| 55 | ;; Leading term
 | 
|---|
| 56 | (defgeneric leading-term (object)
 | 
|---|
| 57 |   (:method ((self poly)) 
 | 
|---|
| 58 |     (car (poly-termlist self)))
 | 
|---|
| 59 |   (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
 | 
|---|
| 60 | 
 | 
|---|
| 61 | ;; Second term
 | 
|---|
| 62 | (defgeneric second-leading-term (object) 
 | 
|---|
| 63 |   (:method ((self poly))
 | 
|---|
| 64 |     (cadar (poly-termlist self)))
 | 
|---|
| 65 |   (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
 | 
|---|
| 66 | 
 | 
|---|
| 67 | ;; Leading coefficient
 | 
|---|
| 68 | (defgeneric leading-coefficient (object)
 | 
|---|
| 69 |   (:method ((self poly))
 | 
|---|
| 70 |     (r-coeff (leading-term self)))
 | 
|---|
| 71 |   (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
 | 
|---|
| 72 | 
 | 
|---|
| 73 | ;; Second coefficient
 | 
|---|
| 74 | (defgeneric second-leading-coefficient (object)
 | 
|---|
| 75 |   (:method ((self poly)) 
 | 
|---|
| 76 |     (r-coeff (second-leading-term self)))
 | 
|---|
| 77 |   (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
 | 
|---|
| 78 | 
 | 
|---|
| 79 | ;; Testing for a zero polynomial
 | 
|---|
| 80 | (defmethod r-zerop ((self poly))
 | 
|---|
| 81 |   (null (poly-termlist self)))
 | 
|---|
| 82 | 
 | 
|---|
| 83 | ;; The number of terms
 | 
|---|
| 84 | (defmethod r-length ((self poly))
 | 
|---|
| 85 |   (length (poly-termlist self)))
 | 
|---|
| 86 | 
 | 
|---|
| 87 | (defmethod multiply-by ((self poly) (other monom))
 | 
|---|
| 88 |   (mapc #'(lambda (term) (multiply-by term other))
 | 
|---|
| 89 |         (poly-termlist self))
 | 
|---|
| 90 |   self)
 | 
|---|
| 91 | 
 | 
|---|
| 92 | (defmethod multiply-by ((self poly) (other scalar))
 | 
|---|
| 93 |   (mapc #'(lambda (term) (multiply-by term other))
 | 
|---|
| 94 |         (poly-termlist self))
 | 
|---|
| 95 |   self)
 | 
|---|
| 96 | 
 | 
|---|
| 97 | 
 | 
|---|
| 98 | (defun fast-addition (p q order-fn add-fun)
 | 
|---|
| 99 |   (macrolet ((lc (x) `(r-coeff (car ,x))))
 | 
|---|
| 100 |     (do ((p p)
 | 
|---|
| 101 |          (q q)
 | 
|---|
| 102 |          r)
 | 
|---|
| 103 |         ((cond 
 | 
|---|
| 104 |            ((endp q))
 | 
|---|
| 105 |            ((endp p) 
 | 
|---|
| 106 |             (setf (cdr r) q)
 | 
|---|
| 107 |             t))
 | 
|---|
| 108 |          (nreconc r q))
 | 
|---|
| 109 |       (multiple-value-bind 
 | 
|---|
| 110 |             (greater-p equal-p)
 | 
|---|
| 111 |           (funcall order-fn (car p) (car q))
 | 
|---|
| 112 |         (cond
 | 
|---|
| 113 |           (greater-p
 | 
|---|
| 114 |            (psetf (cdr p) r
 | 
|---|
| 115 |                   r p
 | 
|---|
| 116 |                   p (cdr p))
 | 
|---|
| 117 |            )
 | 
|---|
| 118 |           (equal-p
 | 
|---|
| 119 |            (let ((s (funcall add-fun (lc p) (lc q))))
 | 
|---|
| 120 |              (unless (r-zerop s)
 | 
|---|
| 121 |                (setf (lc p) s)
 | 
|---|
| 122 |                (psetf p (cdr p)
 | 
|---|
| 123 |                       (cdr p) r
 | 
|---|
| 124 |                       r p)))
 | 
|---|
| 125 |            (setf q (cdr q))
 | 
|---|
| 126 |            )
 | 
|---|
| 127 |           (t 
 | 
|---|
| 128 |            (psetf q (cdr q)
 | 
|---|
| 129 |                   (cdr q) r
 | 
|---|
| 130 |                   r q)))))))
 | 
|---|
| 131 | 
 | 
|---|
| 132 | 
 | 
|---|
| 133 | 
 | 
|---|
| 134 | (defmacro def-additive-operation-method (method-name &optional (doc-string nil doc-string-supplied-p))
 | 
|---|
| 135 |   "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
 | 
|---|
| 136 |   `(defmethod ,method-name ((self poly) (other poly))
 | 
|---|
| 137 |      ,@(when doc-string-supplied-p `(,doc-string))
 | 
|---|
| 138 |      (with-slots ((termlist1 termlist) (order1 order))
 | 
|---|
| 139 |          self
 | 
|---|
| 140 |        (with-slots ((termlist2 termlist) (order2 order))
 | 
|---|
| 141 |            other
 | 
|---|
| 142 |          ;; Ensure orders are compatible
 | 
|---|
| 143 |          (unless (eq order1 order2)
 | 
|---|
| 144 |            (setf termlist2 (sort termlist2 order1)
 | 
|---|
| 145 |                  order2 order1))
 | 
|---|
| 146 |          (setf termlist1 (fast-addition termlist1 termlist2 order1 #',method-name))))
 | 
|---|
| 147 |      self))
 | 
|---|
| 148 | 
 | 
|---|
| 149 | (def-additive-operation-method add-to
 | 
|---|
| 150 |     "Adds to polynomial SELF another polynomial OTHER.
 | 
|---|
| 151 | This operation destructively modifies both polynomials.
 | 
|---|
| 152 | The result is stored in SELF. This implementation does
 | 
|---|
| 153 | no consing, entirely reusing the sells of SELF and OTHER.")
 | 
|---|
| 154 | 
 | 
|---|
| 155 | (def-additive-operation-method subtract-from
 | 
|---|
| 156 |     "Subtracts from polynomial SELF another polynomial OTHER.
 | 
|---|
| 157 | This operation destructively modifies both polynomials.
 | 
|---|
| 158 | The result is stored in SELF. This implementation does
 | 
|---|
| 159 | no consing, entirely reusing the sells of SELF and OTHER.")
 | 
|---|
| 160 | 
 | 
|---|
| 161 | (defmethod unary-uminus ((self poly)))
 | 
|---|
| 162 | 
 | 
|---|
| 163 | #|
 | 
|---|
| 164 | 
 | 
|---|
| 165 | (defun poly-standard-extension (plist &aux (k (length plist)))
 | 
|---|
| 166 |   "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
 | 
|---|
| 167 |   (declare (list plist) (fixnum k))
 | 
|---|
| 168 |   (labels ((incf-power (g i)
 | 
|---|
| 169 |              (dolist (x (poly-termlist g))
 | 
|---|
| 170 |                (incf (monom-elt (term-monom x) i)))
 | 
|---|
| 171 |              (incf (poly-sugar g))))
 | 
|---|
| 172 |     (setf plist (poly-list-add-variables plist k))
 | 
|---|
| 173 |     (dotimes (i k plist)
 | 
|---|
| 174 |       (incf-power (nth i plist) i))))
 | 
|---|
| 175 | 
 | 
|---|
| 176 | (defun saturation-extension (ring f plist 
 | 
|---|
| 177 |                              &aux 
 | 
|---|
| 178 |                                (k (length plist))
 | 
|---|
| 179 |                                (d (monom-dimension (poly-lm (car plist))))
 | 
|---|
| 180 |                                f-x plist-x)
 | 
|---|
| 181 |   "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
 | 
|---|
| 182 |   (declare (type ring ring))
 | 
|---|
| 183 |   (setf f-x (poly-list-add-variables f k)
 | 
|---|
| 184 |         plist-x (mapcar #'(lambda (x)
 | 
|---|
| 185 |                             (setf (poly-termlist x)
 | 
|---|
| 186 |                                   (nconc (poly-termlist x)
 | 
|---|
| 187 |                                          (list (make-term :monom (make-monom :dimension d)
 | 
|---|
| 188 |                                                           :coeff (funcall (ring-uminus ring) 
 | 
|---|
| 189 |                                                                           (funcall (ring-unit ring)))))))
 | 
|---|
| 190 |                             x)
 | 
|---|
| 191 |                         (poly-standard-extension plist)))
 | 
|---|
| 192 |   (append f-x plist-x))
 | 
|---|
| 193 | 
 | 
|---|
| 194 | 
 | 
|---|
| 195 | (defun polysaturation-extension (ring f plist 
 | 
|---|
| 196 |                                  &aux 
 | 
|---|
| 197 |                                    (k (length plist))
 | 
|---|
| 198 |                                    (d (+ k (monom-dimension (poly-lm (car plist)))))
 | 
|---|
| 199 |                                    ;; Add k variables to f
 | 
|---|
| 200 |                                    (f (poly-list-add-variables f k))
 | 
|---|
| 201 |                                    ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
 | 
|---|
| 202 |                                    (plist (apply #'poly-append (poly-standard-extension plist))))
 | 
|---|
| 203 |   "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
 | 
|---|
| 204 |   ;; Add -1 as the last term
 | 
|---|
| 205 |   (declare (type ring ring))
 | 
|---|
| 206 |   (setf (cdr (last (poly-termlist plist)))
 | 
|---|
| 207 |         (list (make-term :monom (make-monom :dimension d)
 | 
|---|
| 208 |                          :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
 | 
|---|
| 209 |   (append f (list plist)))
 | 
|---|
| 210 | 
 | 
|---|
| 211 | (defun saturation-extension-1 (ring f p) 
 | 
|---|
| 212 |   "Calculate [F, U*P-1]. It destructively modifies F."
 | 
|---|
| 213 |   (declare (type ring ring))
 | 
|---|
| 214 |   (polysaturation-extension ring f (list p)))
 | 
|---|
| 215 | 
 | 
|---|
| 216 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
| 217 | ;;
 | 
|---|
| 218 | ;; Evaluation of polynomial (prefix) expressions
 | 
|---|
| 219 | ;;
 | 
|---|
| 220 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
| 221 | 
 | 
|---|
| 222 | (defun coerce-coeff (ring expr vars)
 | 
|---|
| 223 |   "Coerce an element of the coefficient ring to a constant polynomial."
 | 
|---|
| 224 |   ;; Modular arithmetic handler by rat
 | 
|---|
| 225 |   (declare (type ring ring))
 | 
|---|
| 226 |   (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
 | 
|---|
| 227 |                                             :coeff (funcall (ring-parse ring) expr)))
 | 
|---|
| 228 |                            0))
 | 
|---|
| 229 | 
 | 
|---|
| 230 | (defun poly-eval (expr vars 
 | 
|---|
| 231 |                   &optional 
 | 
|---|
| 232 |                     (ring +ring-of-integers+) 
 | 
|---|
| 233 |                     (order #'lex>)
 | 
|---|
| 234 |                     (list-marker :[)
 | 
|---|
| 235 |                   &aux 
 | 
|---|
| 236 |                     (ring-and-order (make-ring-and-order :ring ring :order order)))
 | 
|---|
| 237 |   "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
 | 
|---|
| 238 | variables VARS. Return the resulting polynomial or list of
 | 
|---|
| 239 | polynomials.  Standard arithmetical operators in form EXPR are
 | 
|---|
| 240 | replaced with their analogues in the ring of polynomials, and the
 | 
|---|
| 241 | resulting expression is evaluated, resulting in a polynomial or a list
 | 
|---|
| 242 | of polynomials in internal form. A similar operation in another computer
 | 
|---|
| 243 | algebra system could be called 'expand' or so."
 | 
|---|
| 244 |   (declare (type ring ring))
 | 
|---|
| 245 |   (labels ((p-eval (arg) (poly-eval arg vars ring order))
 | 
|---|
| 246 |            (p-eval-scalar (arg) (poly-eval-scalar arg))
 | 
|---|
| 247 |            (p-eval-list (args) (mapcar #'p-eval args))
 | 
|---|
| 248 |            (p-add (x y) (poly-add ring-and-order x y)))
 | 
|---|
| 249 |     (cond
 | 
|---|
| 250 |       ((null expr) (error "Empty expression"))
 | 
|---|
| 251 |       ((eql expr 0) (make-poly-zero))
 | 
|---|
| 252 |       ((member expr vars :test #'equalp)
 | 
|---|
| 253 |        (let ((pos (position expr vars :test #'equalp)))
 | 
|---|
| 254 |          (make-poly-variable ring (length vars) pos)))
 | 
|---|
| 255 |       ((atom expr)
 | 
|---|
| 256 |        (coerce-coeff ring expr vars))
 | 
|---|
| 257 |       ((eq (car expr) list-marker)
 | 
|---|
| 258 |        (cons list-marker (p-eval-list (cdr expr))))
 | 
|---|
| 259 |       (t
 | 
|---|
| 260 |        (case (car expr)
 | 
|---|
| 261 |          (+ (reduce #'p-add (p-eval-list (cdr expr))))
 | 
|---|
| 262 |          (- (case (length expr)
 | 
|---|
| 263 |               (1 (make-poly-zero))
 | 
|---|
| 264 |               (2 (poly-uminus ring (p-eval (cadr expr))))
 | 
|---|
| 265 |               (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
 | 
|---|
| 266 |               (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
 | 
|---|
| 267 |                                    (reduce #'p-add (p-eval-list (cddr expr)))))))
 | 
|---|
| 268 |          (*
 | 
|---|
| 269 |           (if (endp (cddr expr))                ;unary
 | 
|---|
| 270 |               (p-eval (cdr expr))
 | 
|---|
| 271 |               (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
 | 
|---|
| 272 |          (/ 
 | 
|---|
| 273 |           ;; A polynomial can be divided by a scalar
 | 
|---|
| 274 |           (cond 
 | 
|---|
| 275 |             ((endp (cddr expr))
 | 
|---|
| 276 |              ;; A special case (/ ?), the inverse
 | 
|---|
| 277 |              (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
 | 
|---|
| 278 |             (t
 | 
|---|
| 279 |              (let ((num (p-eval (cadr expr)))
 | 
|---|
| 280 |                    (denom-inverse (apply (ring-div ring)
 | 
|---|
| 281 |                                          (cons (funcall (ring-unit ring)) 
 | 
|---|
| 282 |                                                (mapcar #'p-eval-scalar (cddr expr))))))
 | 
|---|
| 283 |                (scalar-times-poly ring denom-inverse num)))))
 | 
|---|
| 284 |          (expt
 | 
|---|
| 285 |           (cond
 | 
|---|
| 286 |             ((member (cadr expr) vars :test #'equalp)
 | 
|---|
| 287 |              ;;Special handling of (expt var pow)
 | 
|---|
| 288 |              (let ((pos (position (cadr expr) vars :test #'equalp)))
 | 
|---|
| 289 |                (make-poly-variable ring (length vars) pos (caddr expr))))
 | 
|---|
| 290 |             ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
 | 
|---|
| 291 |              ;; Negative power means division in coefficient ring
 | 
|---|
| 292 |              ;; Non-integer power means non-polynomial coefficient
 | 
|---|
| 293 |              (coerce-coeff ring expr vars))
 | 
|---|
| 294 |             (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
 | 
|---|
| 295 |          (otherwise
 | 
|---|
| 296 |           (coerce-coeff ring expr vars)))))))
 | 
|---|
| 297 | 
 | 
|---|
| 298 | (defun poly-eval-scalar (expr 
 | 
|---|
| 299 |                          &optional
 | 
|---|
| 300 |                            (ring +ring-of-integers+)
 | 
|---|
| 301 |                          &aux 
 | 
|---|
| 302 |                            (order #'lex>))
 | 
|---|
| 303 |   "Evaluate a scalar expression EXPR in ring RING."
 | 
|---|
| 304 |   (declare (type ring ring))
 | 
|---|
| 305 |   (poly-lc (poly-eval expr nil ring order)))
 | 
|---|
| 306 | 
 | 
|---|
| 307 | (defun spoly (ring-and-order f g
 | 
|---|
| 308 |               &aux
 | 
|---|
| 309 |                 (ring (ro-ring ring-and-order)))
 | 
|---|
| 310 |   "It yields the S-polynomial of polynomials F and G."
 | 
|---|
| 311 |   (declare (type ring-and-order ring-and-order) (type poly f g))
 | 
|---|
| 312 |   (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
 | 
|---|
| 313 |           (mf (monom-div lcm (poly-lm f)))
 | 
|---|
| 314 |           (mg (monom-div lcm (poly-lm g))))
 | 
|---|
| 315 |     (declare (type monom mf mg))
 | 
|---|
| 316 |     (multiple-value-bind (c cf cg)
 | 
|---|
| 317 |         (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
 | 
|---|
| 318 |       (declare (ignore c))
 | 
|---|
| 319 |       (poly-sub 
 | 
|---|
| 320 |        ring-and-order
 | 
|---|
| 321 |        (scalar-times-poly ring cg (monom-times-poly mf f))
 | 
|---|
| 322 |        (scalar-times-poly ring cf (monom-times-poly mg g))))))
 | 
|---|
| 323 | 
 | 
|---|
| 324 | 
 | 
|---|
| 325 | (defun poly-primitive-part (ring p)
 | 
|---|
| 326 |   "Divide polynomial P with integer coefficients by gcd of its
 | 
|---|
| 327 | coefficients and return the result."
 | 
|---|
| 328 |   (declare (type ring ring) (type poly p))
 | 
|---|
| 329 |   (if (poly-zerop p)
 | 
|---|
| 330 |       (values p 1)
 | 
|---|
| 331 |     (let ((c (poly-content ring p)))
 | 
|---|
| 332 |       (values (make-poly-from-termlist 
 | 
|---|
| 333 |                (mapcar
 | 
|---|
| 334 |                 #'(lambda (x)
 | 
|---|
| 335 |                     (make-term :monom (term-monom x)
 | 
|---|
| 336 |                                :coeff (funcall (ring-div ring) (term-coeff x) c)))
 | 
|---|
| 337 |                 (poly-termlist p))
 | 
|---|
| 338 |                (poly-sugar p))
 | 
|---|
| 339 |               c))))
 | 
|---|
| 340 | 
 | 
|---|
| 341 | (defun poly-content (ring p)
 | 
|---|
| 342 |   "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
 | 
|---|
| 343 | to compute the greatest common divisor."
 | 
|---|
| 344 |   (declare (type ring ring) (type poly p))
 | 
|---|
| 345 |   (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
 | 
|---|
| 346 | 
 | 
|---|
| 347 | (defun read-infix-form (&key (stream t))
 | 
|---|
| 348 |   "Parser of infix expressions with integer/rational coefficients
 | 
|---|
| 349 | The parser will recognize two kinds of polynomial expressions:
 | 
|---|
| 350 | 
 | 
|---|
| 351 | - polynomials in fully expanded forms with coefficients
 | 
|---|
| 352 |   written in front of symbolic expressions; constants can be optionally
 | 
|---|
| 353 |   enclosed in (); for example, the infix form
 | 
|---|
| 354 |         X^2-Y^2+(-4/3)*U^2*W^3-5
 | 
|---|
| 355 |   parses to
 | 
|---|
| 356 |         (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
 | 
|---|
| 357 | 
 | 
|---|
| 358 | - lists of polynomials; for example
 | 
|---|
| 359 |         [X-Y, X^2+3*Z]          
 | 
|---|
| 360 |   parses to
 | 
|---|
| 361 |           (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
 | 
|---|
| 362 |   where the first symbol [ marks a list of polynomials.
 | 
|---|
| 363 | 
 | 
|---|
| 364 | -other infix expressions, for example
 | 
|---|
| 365 |         [(X-Y)*(X+Y)/Z,(X+1)^2]
 | 
|---|
| 366 | parses to:
 | 
|---|
| 367 |         (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
 | 
|---|
| 368 | Currently this function is implemented using M. Kantrowitz's INFIX package."
 | 
|---|
| 369 |   (read-from-string
 | 
|---|
| 370 |    (concatenate 'string
 | 
|---|
| 371 |      "#I(" 
 | 
|---|
| 372 |      (with-output-to-string (s)
 | 
|---|
| 373 |        (loop
 | 
|---|
| 374 |          (multiple-value-bind (line eof)
 | 
|---|
| 375 |              (read-line stream t)
 | 
|---|
| 376 |            (format s "~A" line)
 | 
|---|
| 377 |            (when eof (return)))))
 | 
|---|
| 378 |      ")")))
 | 
|---|
| 379 |         
 | 
|---|
| 380 | (defun read-poly (vars &key
 | 
|---|
| 381 |                          (stream t) 
 | 
|---|
| 382 |                          (ring +ring-of-integers+) 
 | 
|---|
| 383 |                          (order #'lex>))
 | 
|---|
| 384 |   "Reads an expression in prefix form from a stream STREAM.
 | 
|---|
| 385 | The expression read from the strem should represent a polynomial or a
 | 
|---|
| 386 | list of polynomials in variables VARS, over the ring RING.  The
 | 
|---|
| 387 | polynomial or list of polynomials is returned, with terms in each
 | 
|---|
| 388 | polynomial ordered according to monomial order ORDER."
 | 
|---|
| 389 |   (poly-eval (read-infix-form :stream stream) vars ring order))
 | 
|---|
| 390 | 
 | 
|---|
| 391 | (defun string->poly (str vars 
 | 
|---|
| 392 |                      &optional
 | 
|---|
| 393 |                        (ring +ring-of-integers+) 
 | 
|---|
| 394 |                        (order #'lex>))
 | 
|---|
| 395 |   "Converts a string STR to a polynomial in variables VARS."
 | 
|---|
| 396 |   (with-input-from-string (s str)
 | 
|---|
| 397 |     (read-poly vars :stream s :ring ring :order order)))
 | 
|---|
| 398 | 
 | 
|---|
| 399 | (defun poly->alist (p)
 | 
|---|
| 400 |   "Convert a polynomial P to an association list. Thus, the format of the
 | 
|---|
| 401 | returned value is  ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
 | 
|---|
| 402 | MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
 | 
|---|
| 403 | corresponding coefficient in the ring."
 | 
|---|
| 404 |   (cond
 | 
|---|
| 405 |     ((poly-p p)
 | 
|---|
| 406 |      (mapcar #'term->cons (poly-termlist p)))
 | 
|---|
| 407 |     ((and (consp p) (eq (car p) :[))
 | 
|---|
| 408 |      (cons :[ (mapcar #'poly->alist (cdr p))))))
 | 
|---|
| 409 | 
 | 
|---|
| 410 | (defun string->alist (str vars
 | 
|---|
| 411 |                      &optional
 | 
|---|
| 412 |                        (ring +ring-of-integers+) 
 | 
|---|
| 413 |                        (order #'lex>))
 | 
|---|
| 414 |   "Convert a string STR representing a polynomial or polynomial list to
 | 
|---|
| 415 | an association list (... (MONOM . COEFF) ...)."
 | 
|---|
| 416 |   (poly->alist (string->poly str vars ring order)))
 | 
|---|
| 417 | 
 | 
|---|
| 418 | (defun poly-equal-no-sugar-p (p q)
 | 
|---|
| 419 |   "Compare polynomials for equality, ignoring sugar."
 | 
|---|
| 420 |   (declare (type poly p q))
 | 
|---|
| 421 |   (equalp (poly-termlist p) (poly-termlist q)))
 | 
|---|
| 422 | 
 | 
|---|
| 423 | (defun poly-set-equal-no-sugar-p (p q)
 | 
|---|
| 424 |   "Compare polynomial sets P and Q for equality, ignoring sugar."
 | 
|---|
| 425 |   (null (set-exclusive-or  p q :test #'poly-equal-no-sugar-p )))
 | 
|---|
| 426 | 
 | 
|---|
| 427 | (defun poly-list-equal-no-sugar-p (p q)
 | 
|---|
| 428 |   "Compare polynomial lists P and Q for equality, ignoring sugar."
 | 
|---|
| 429 |   (every #'poly-equal-no-sugar-p p q))
 | 
|---|
| 430 | |#
 | 
|---|