close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2569

Last change on this file since 2569 was 2569, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 13.8 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY")
25 (:documentation "Implements polynomials"))
26
27(in-package :polynomial)
28
29(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
30
31(defclass poly ()
32 ((termlist :initarg :termlist :accessor poly-termlist))
33 (:default-initargs :termlist nil))
34
35(defmethod print-object ((self poly) stream)
36 (format stream "#<POLY TERMLIST=~A >" (poly-termlist self)))
37
38(defmethod insert-item ((self poly) (item term))
39 (push item (poly-termlist self))
40 self)
41
42(defmethod append-item ((self poly) (item term))
43 (setf (cdr (last (poly-termlist self))) (list item))
44 self)
45
46;; Leading term
47(defgeneric leading-term (object)
48 (:method ((self poly))
49 (car (poly-termlist self)))
50 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
51
52;; Second term
53(defgeneric second-leading-term (object)
54 (:method ((self poly))
55 (cadar (poly-termlist self)))
56 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
57
58;; Leading coefficient
59(defgeneric leading-coefficient (object)
60 (:method ((self poly))
61 (r-coeff (leading-term self)))
62 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
63
64;; Second coefficient
65(defgeneric second-leading-coefficient (object)
66 (:method ((self poly))
67 (r-coeff (second-leading-term self)))
68 (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
69
70;; Testing for a zero polynomial
71(defmethod r-zerop ((self poly))
72 (null (poly-termlist self)))
73
74;; The number of terms
75(defmethod r-length ((self poly))
76 (length (poly-termlist self)))
77
78(defmethod multiply-by ((self poly) (other monom))
79 (mapc #'(lambda (term) (multiply-by term other))
80 (poly-termlist self))
81 self)
82
83(defmethod multiply-by ((self poly) (other scalar))
84 (mapc #'(lambda (term) (multiply-by term other))
85 (poly-termlist self))
86 self)
87
88(defmethod add-to ((self poly) (other poly))
89 "Adds to polynomial SELF another polynomial OTHER.
90This operation destructively modifies both polynomials.
91The result is stored in SELF. This implementation does
92no consing, entirely reusing the sells of SELF and OTHER."
93 (macrolet ((lt (termlist) `(car ,termlist))
94 (lc (termlist) `(r-coeff (car ,termlist))))
95 (with-slots ((termlist1 termlist))
96 self
97 (with-slots ((termlist2 termlist))
98 other
99 (do ((p termlist1)
100 (q termlist2))
101 ((endp q))
102 (multiple-value-bind
103 (greater-p equal-p)
104 (lex> (lt q) (lt p))
105 (cond
106 (greater-p
107 ;; P' <- Q
108 ;; (CDR P') <- P
109 ;; Q' <- (CDR Q)
110 (rotatef p q (cdr q)))
111 (equal-p
112 (setf (lc p) (add-to (lc p) (lc q))
113 p (cdr p)
114 q (cdr q))))
115 (not greater-p))))))
116 self)
117
118(defmethod subtract-from ((self poly) (other poly)))
119
120(defmethod unary-uminus ((self poly)))
121
122#|
123
124(defun poly-standard-extension (plist &aux (k (length plist)))
125 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
126 (declare (list plist) (fixnum k))
127 (labels ((incf-power (g i)
128 (dolist (x (poly-termlist g))
129 (incf (monom-elt (term-monom x) i)))
130 (incf (poly-sugar g))))
131 (setf plist (poly-list-add-variables plist k))
132 (dotimes (i k plist)
133 (incf-power (nth i plist) i))))
134
135(defun saturation-extension (ring f plist
136 &aux
137 (k (length plist))
138 (d (monom-dimension (poly-lm (car plist))))
139 f-x plist-x)
140 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
141 (declare (type ring ring))
142 (setf f-x (poly-list-add-variables f k)
143 plist-x (mapcar #'(lambda (x)
144 (setf (poly-termlist x)
145 (nconc (poly-termlist x)
146 (list (make-term :monom (make-monom :dimension d)
147 :coeff (funcall (ring-uminus ring)
148 (funcall (ring-unit ring)))))))
149 x)
150 (poly-standard-extension plist)))
151 (append f-x plist-x))
152
153
154(defun polysaturation-extension (ring f plist
155 &aux
156 (k (length plist))
157 (d (+ k (monom-dimension (poly-lm (car plist)))))
158 ;; Add k variables to f
159 (f (poly-list-add-variables f k))
160 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
161 (plist (apply #'poly-append (poly-standard-extension plist))))
162 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
163 ;; Add -1 as the last term
164 (declare (type ring ring))
165 (setf (cdr (last (poly-termlist plist)))
166 (list (make-term :monom (make-monom :dimension d)
167 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
168 (append f (list plist)))
169
170(defun saturation-extension-1 (ring f p)
171 "Calculate [F, U*P-1]. It destructively modifies F."
172 (declare (type ring ring))
173 (polysaturation-extension ring f (list p)))
174
175;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
176;;
177;; Evaluation of polynomial (prefix) expressions
178;;
179;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
180
181(defun coerce-coeff (ring expr vars)
182 "Coerce an element of the coefficient ring to a constant polynomial."
183 ;; Modular arithmetic handler by rat
184 (declare (type ring ring))
185 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
186 :coeff (funcall (ring-parse ring) expr)))
187 0))
188
189(defun poly-eval (expr vars
190 &optional
191 (ring +ring-of-integers+)
192 (order #'lex>)
193 (list-marker :[)
194 &aux
195 (ring-and-order (make-ring-and-order :ring ring :order order)))
196 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
197variables VARS. Return the resulting polynomial or list of
198polynomials. Standard arithmetical operators in form EXPR are
199replaced with their analogues in the ring of polynomials, and the
200resulting expression is evaluated, resulting in a polynomial or a list
201of polynomials in internal form. A similar operation in another computer
202algebra system could be called 'expand' or so."
203 (declare (type ring ring))
204 (labels ((p-eval (arg) (poly-eval arg vars ring order))
205 (p-eval-scalar (arg) (poly-eval-scalar arg))
206 (p-eval-list (args) (mapcar #'p-eval args))
207 (p-add (x y) (poly-add ring-and-order x y)))
208 (cond
209 ((null expr) (error "Empty expression"))
210 ((eql expr 0) (make-poly-zero))
211 ((member expr vars :test #'equalp)
212 (let ((pos (position expr vars :test #'equalp)))
213 (make-poly-variable ring (length vars) pos)))
214 ((atom expr)
215 (coerce-coeff ring expr vars))
216 ((eq (car expr) list-marker)
217 (cons list-marker (p-eval-list (cdr expr))))
218 (t
219 (case (car expr)
220 (+ (reduce #'p-add (p-eval-list (cdr expr))))
221 (- (case (length expr)
222 (1 (make-poly-zero))
223 (2 (poly-uminus ring (p-eval (cadr expr))))
224 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
225 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
226 (reduce #'p-add (p-eval-list (cddr expr)))))))
227 (*
228 (if (endp (cddr expr)) ;unary
229 (p-eval (cdr expr))
230 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
231 (/
232 ;; A polynomial can be divided by a scalar
233 (cond
234 ((endp (cddr expr))
235 ;; A special case (/ ?), the inverse
236 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
237 (t
238 (let ((num (p-eval (cadr expr)))
239 (denom-inverse (apply (ring-div ring)
240 (cons (funcall (ring-unit ring))
241 (mapcar #'p-eval-scalar (cddr expr))))))
242 (scalar-times-poly ring denom-inverse num)))))
243 (expt
244 (cond
245 ((member (cadr expr) vars :test #'equalp)
246 ;;Special handling of (expt var pow)
247 (let ((pos (position (cadr expr) vars :test #'equalp)))
248 (make-poly-variable ring (length vars) pos (caddr expr))))
249 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
250 ;; Negative power means division in coefficient ring
251 ;; Non-integer power means non-polynomial coefficient
252 (coerce-coeff ring expr vars))
253 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
254 (otherwise
255 (coerce-coeff ring expr vars)))))))
256
257(defun poly-eval-scalar (expr
258 &optional
259 (ring +ring-of-integers+)
260 &aux
261 (order #'lex>))
262 "Evaluate a scalar expression EXPR in ring RING."
263 (declare (type ring ring))
264 (poly-lc (poly-eval expr nil ring order)))
265
266(defun spoly (ring-and-order f g
267 &aux
268 (ring (ro-ring ring-and-order)))
269 "It yields the S-polynomial of polynomials F and G."
270 (declare (type ring-and-order ring-and-order) (type poly f g))
271 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
272 (mf (monom-div lcm (poly-lm f)))
273 (mg (monom-div lcm (poly-lm g))))
274 (declare (type monom mf mg))
275 (multiple-value-bind (c cf cg)
276 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
277 (declare (ignore c))
278 (poly-sub
279 ring-and-order
280 (scalar-times-poly ring cg (monom-times-poly mf f))
281 (scalar-times-poly ring cf (monom-times-poly mg g))))))
282
283
284(defun poly-primitive-part (ring p)
285 "Divide polynomial P with integer coefficients by gcd of its
286coefficients and return the result."
287 (declare (type ring ring) (type poly p))
288 (if (poly-zerop p)
289 (values p 1)
290 (let ((c (poly-content ring p)))
291 (values (make-poly-from-termlist
292 (mapcar
293 #'(lambda (x)
294 (make-term :monom (term-monom x)
295 :coeff (funcall (ring-div ring) (term-coeff x) c)))
296 (poly-termlist p))
297 (poly-sugar p))
298 c))))
299
300(defun poly-content (ring p)
301 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
302to compute the greatest common divisor."
303 (declare (type ring ring) (type poly p))
304 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
305
306(defun read-infix-form (&key (stream t))
307 "Parser of infix expressions with integer/rational coefficients
308The parser will recognize two kinds of polynomial expressions:
309
310- polynomials in fully expanded forms with coefficients
311 written in front of symbolic expressions; constants can be optionally
312 enclosed in (); for example, the infix form
313 X^2-Y^2+(-4/3)*U^2*W^3-5
314 parses to
315 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
316
317- lists of polynomials; for example
318 [X-Y, X^2+3*Z]
319 parses to
320 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
321 where the first symbol [ marks a list of polynomials.
322
323-other infix expressions, for example
324 [(X-Y)*(X+Y)/Z,(X+1)^2]
325parses to:
326 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
327Currently this function is implemented using M. Kantrowitz's INFIX package."
328 (read-from-string
329 (concatenate 'string
330 "#I("
331 (with-output-to-string (s)
332 (loop
333 (multiple-value-bind (line eof)
334 (read-line stream t)
335 (format s "~A" line)
336 (when eof (return)))))
337 ")")))
338
339(defun read-poly (vars &key
340 (stream t)
341 (ring +ring-of-integers+)
342 (order #'lex>))
343 "Reads an expression in prefix form from a stream STREAM.
344The expression read from the strem should represent a polynomial or a
345list of polynomials in variables VARS, over the ring RING. The
346polynomial or list of polynomials is returned, with terms in each
347polynomial ordered according to monomial order ORDER."
348 (poly-eval (read-infix-form :stream stream) vars ring order))
349
350(defun string->poly (str vars
351 &optional
352 (ring +ring-of-integers+)
353 (order #'lex>))
354 "Converts a string STR to a polynomial in variables VARS."
355 (with-input-from-string (s str)
356 (read-poly vars :stream s :ring ring :order order)))
357
358(defun poly->alist (p)
359 "Convert a polynomial P to an association list. Thus, the format of the
360returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
361MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
362corresponding coefficient in the ring."
363 (cond
364 ((poly-p p)
365 (mapcar #'term->cons (poly-termlist p)))
366 ((and (consp p) (eq (car p) :[))
367 (cons :[ (mapcar #'poly->alist (cdr p))))))
368
369(defun string->alist (str vars
370 &optional
371 (ring +ring-of-integers+)
372 (order #'lex>))
373 "Convert a string STR representing a polynomial or polynomial list to
374an association list (... (MONOM . COEFF) ...)."
375 (poly->alist (string->poly str vars ring order)))
376
377(defun poly-equal-no-sugar-p (p q)
378 "Compare polynomials for equality, ignoring sugar."
379 (declare (type poly p q))
380 (equalp (poly-termlist p) (poly-termlist q)))
381
382(defun poly-set-equal-no-sugar-p (p q)
383 "Compare polynomial sets P and Q for equality, ignoring sugar."
384 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
385
386(defun poly-list-equal-no-sugar-p (p q)
387 "Compare polynomial lists P and Q for equality, ignoring sugar."
388 (every #'poly-equal-no-sugar-p p q))
389|#
Note: See TracBrowser for help on using the repository browser.