close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2533

Last change on this file since 2533 was 2533, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 14.2 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY")
25 (:documentation "Implements polynomials"))
26
27(in-package :polynomial)
28
29(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
30
31#|
32 ;;
33 ;; BOA constructor, by default constructs zero polynomial
34 (:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist))))
35 (:constructor make-poly-zero (&aux (termlist nil) (sugar -1)))
36 ;; Constructor of polynomials representing a variable
37 (:constructor make-poly-variable (ring nvars pos &optional (power 1)
38 &aux
39 (termlist (list
40 (make-term-variable ring nvars pos power)))
41 (sugar power)))
42 (:constructor poly-unit (ring dimension
43 &aux
44 (termlist (termlist-unit ring dimension))
45 (sugar 0))))
46
47|#
48
49(defclass poly ()
50 ((termlist :initarg :termlist :accessor poly-termlist))
51 (:default-initargs :termlist nil))
52
53(defmethod print-object ((self poly) stream)
54 (format stream "#<POLY TERMLIST=~A >" (poly-termlist self)))
55
56(defmethod insert-item ((self poly) (item term))
57 (push item (poly-termlist self))
58 self)
59
60(defmethod append-item ((self poly) (item term))
61 (setf (cdr (last (poly-termlist self))) (list item))
62 self)
63
64;; Leading term
65(defgeneric leading-term (object)
66 (:method ((self poly))
67 (car (poly-termlist self)))
68 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
69
70;; Second term
71(defgeneric second-leading-term (object)
72 (:method ((self poly))
73 (cadar (poly-termlist self)))
74 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
75
76;; Leading coefficient
77(defgeneric leading-coefficient (object)
78 (:method ((self poly))
79 (r-coeff (leading-term self)))
80 (:documentation "The leading coefficient of a polynomial. It signals
81 error for a zero polynomial.")
82
83;; Second coefficient
84(defgeneric second-leading-coefficient (object)
85 (:method ((self poly))
86 (r-coeff (second-leading-term self)))
87 (:documentation "The second leading coefficient of a polynomial. It
88 signals error for a polynomial with at most one term."))
89
90;; Testing for a zero polynomial
91(defmethod r-zerop ((self poly))
92 (null (poly-termlist self)))
93
94;; The number of terms
95(defmethod r-length ((self poly))
96 (length (poly-termlist self)))
97
98(defmethod multiply-by ((self poly) (other monom))
99 (mapc #'(lambda (term) (multiply-by term other))
100 (poly-termlist self))
101 self)
102
103(defmethod multiply-by ((self poly) (other scalar))
104 (mapc #'(lambda (term) (multiply-by term other))
105 (poly-termlist self))
106 self)
107
108(defmethod add-to ((self poly) (other poly))
109 (macrolet ((lt (termlist) `(car ,termlist))
110 (lc (termlist) `(term-coeff (lt ,termlist))))
111 (with-slots ((p termlist) order)
112 self
113 (with-slots ((q termlist))
114 other
115 (do (r)
116 ((cond
117 ((endp p)
118 (setf p (nconc p q))
119 t)
120 ((endp q))
121 (t
122 (multiple-value-bind
123 (lm-greater lm-equal)
124 (funcall order (car p) (car q))
125 (cond
126 (lm-equal
127 (let ((s (r+ (lc p) (lc q))))
128 (unless (r-zerop s)
129
130 (lm-greater
131 (setf r (cons (car p) r)
132 p (cdr p)))
133 (t (setf r (cons (car q) r)
134 q (cdr q)))))
135 nil))
136 r)))))))))
137 self)
138
139(defmethod subtract-from ((self poly) (other poly)))
140
141(defmethod unary-uminus ((self poly)))
142
143#|
144
145(defun poly-standard-extension (plist &aux (k (length plist)))
146 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
147 (declare (list plist) (fixnum k))
148 (labels ((incf-power (g i)
149 (dolist (x (poly-termlist g))
150 (incf (monom-elt (term-monom x) i)))
151 (incf (poly-sugar g))))
152 (setf plist (poly-list-add-variables plist k))
153 (dotimes (i k plist)
154 (incf-power (nth i plist) i))))
155
156(defun saturation-extension (ring f plist
157 &aux
158 (k (length plist))
159 (d (monom-dimension (poly-lm (car plist))))
160 f-x plist-x)
161 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
162 (declare (type ring ring))
163 (setf f-x (poly-list-add-variables f k)
164 plist-x (mapcar #'(lambda (x)
165 (setf (poly-termlist x)
166 (nconc (poly-termlist x)
167 (list (make-term :monom (make-monom :dimension d)
168 :coeff (funcall (ring-uminus ring)
169 (funcall (ring-unit ring)))))))
170 x)
171 (poly-standard-extension plist)))
172 (append f-x plist-x))
173
174
175(defun polysaturation-extension (ring f plist
176 &aux
177 (k (length plist))
178 (d (+ k (monom-dimension (poly-lm (car plist)))))
179 ;; Add k variables to f
180 (f (poly-list-add-variables f k))
181 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
182 (plist (apply #'poly-append (poly-standard-extension plist))))
183 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
184 ;; Add -1 as the last term
185 (declare (type ring ring))
186 (setf (cdr (last (poly-termlist plist)))
187 (list (make-term :monom (make-monom :dimension d)
188 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
189 (append f (list plist)))
190
191(defun saturation-extension-1 (ring f p)
192 "Calculate [F, U*P-1]. It destructively modifies F."
193 (declare (type ring ring))
194 (polysaturation-extension ring f (list p)))
195
196;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
197;;
198;; Evaluation of polynomial (prefix) expressions
199;;
200;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
201
202(defun coerce-coeff (ring expr vars)
203 "Coerce an element of the coefficient ring to a constant polynomial."
204 ;; Modular arithmetic handler by rat
205 (declare (type ring ring))
206 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
207 :coeff (funcall (ring-parse ring) expr)))
208 0))
209
210(defun poly-eval (expr vars
211 &optional
212 (ring +ring-of-integers+)
213 (order #'lex>)
214 (list-marker :[)
215 &aux
216 (ring-and-order (make-ring-and-order :ring ring :order order)))
217 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
218variables VARS. Return the resulting polynomial or list of
219polynomials. Standard arithmetical operators in form EXPR are
220replaced with their analogues in the ring of polynomials, and the
221resulting expression is evaluated, resulting in a polynomial or a list
222of polynomials in internal form. A similar operation in another computer
223algebra system could be called 'expand' or so."
224 (declare (type ring ring))
225 (labels ((p-eval (arg) (poly-eval arg vars ring order))
226 (p-eval-scalar (arg) (poly-eval-scalar arg))
227 (p-eval-list (args) (mapcar #'p-eval args))
228 (p-add (x y) (poly-add ring-and-order x y)))
229 (cond
230 ((null expr) (error "Empty expression"))
231 ((eql expr 0) (make-poly-zero))
232 ((member expr vars :test #'equalp)
233 (let ((pos (position expr vars :test #'equalp)))
234 (make-poly-variable ring (length vars) pos)))
235 ((atom expr)
236 (coerce-coeff ring expr vars))
237 ((eq (car expr) list-marker)
238 (cons list-marker (p-eval-list (cdr expr))))
239 (t
240 (case (car expr)
241 (+ (reduce #'p-add (p-eval-list (cdr expr))))
242 (- (case (length expr)
243 (1 (make-poly-zero))
244 (2 (poly-uminus ring (p-eval (cadr expr))))
245 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
246 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
247 (reduce #'p-add (p-eval-list (cddr expr)))))))
248 (*
249 (if (endp (cddr expr)) ;unary
250 (p-eval (cdr expr))
251 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
252 (/
253 ;; A polynomial can be divided by a scalar
254 (cond
255 ((endp (cddr expr))
256 ;; A special case (/ ?), the inverse
257 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
258 (t
259 (let ((num (p-eval (cadr expr)))
260 (denom-inverse (apply (ring-div ring)
261 (cons (funcall (ring-unit ring))
262 (mapcar #'p-eval-scalar (cddr expr))))))
263 (scalar-times-poly ring denom-inverse num)))))
264 (expt
265 (cond
266 ((member (cadr expr) vars :test #'equalp)
267 ;;Special handling of (expt var pow)
268 (let ((pos (position (cadr expr) vars :test #'equalp)))
269 (make-poly-variable ring (length vars) pos (caddr expr))))
270 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
271 ;; Negative power means division in coefficient ring
272 ;; Non-integer power means non-polynomial coefficient
273 (coerce-coeff ring expr vars))
274 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
275 (otherwise
276 (coerce-coeff ring expr vars)))))))
277
278(defun poly-eval-scalar (expr
279 &optional
280 (ring +ring-of-integers+)
281 &aux
282 (order #'lex>))
283 "Evaluate a scalar expression EXPR in ring RING."
284 (declare (type ring ring))
285 (poly-lc (poly-eval expr nil ring order)))
286
287(defun spoly (ring-and-order f g
288 &aux
289 (ring (ro-ring ring-and-order)))
290 "It yields the S-polynomial of polynomials F and G."
291 (declare (type ring-and-order ring-and-order) (type poly f g))
292 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
293 (mf (monom-div lcm (poly-lm f)))
294 (mg (monom-div lcm (poly-lm g))))
295 (declare (type monom mf mg))
296 (multiple-value-bind (c cf cg)
297 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
298 (declare (ignore c))
299 (poly-sub
300 ring-and-order
301 (scalar-times-poly ring cg (monom-times-poly mf f))
302 (scalar-times-poly ring cf (monom-times-poly mg g))))))
303
304
305(defun poly-primitive-part (ring p)
306 "Divide polynomial P with integer coefficients by gcd of its
307coefficients and return the result."
308 (declare (type ring ring) (type poly p))
309 (if (poly-zerop p)
310 (values p 1)
311 (let ((c (poly-content ring p)))
312 (values (make-poly-from-termlist
313 (mapcar
314 #'(lambda (x)
315 (make-term :monom (term-monom x)
316 :coeff (funcall (ring-div ring) (term-coeff x) c)))
317 (poly-termlist p))
318 (poly-sugar p))
319 c))))
320
321(defun poly-content (ring p)
322 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
323to compute the greatest common divisor."
324 (declare (type ring ring) (type poly p))
325 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
326
327(defun read-infix-form (&key (stream t))
328 "Parser of infix expressions with integer/rational coefficients
329The parser will recognize two kinds of polynomial expressions:
330
331- polynomials in fully expanded forms with coefficients
332 written in front of symbolic expressions; constants can be optionally
333 enclosed in (); for example, the infix form
334 X^2-Y^2+(-4/3)*U^2*W^3-5
335 parses to
336 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
337
338- lists of polynomials; for example
339 [X-Y, X^2+3*Z]
340 parses to
341 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
342 where the first symbol [ marks a list of polynomials.
343
344-other infix expressions, for example
345 [(X-Y)*(X+Y)/Z,(X+1)^2]
346parses to:
347 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
348Currently this function is implemented using M. Kantrowitz's INFIX package."
349 (read-from-string
350 (concatenate 'string
351 "#I("
352 (with-output-to-string (s)
353 (loop
354 (multiple-value-bind (line eof)
355 (read-line stream t)
356 (format s "~A" line)
357 (when eof (return)))))
358 ")")))
359
360(defun read-poly (vars &key
361 (stream t)
362 (ring +ring-of-integers+)
363 (order #'lex>))
364 "Reads an expression in prefix form from a stream STREAM.
365The expression read from the strem should represent a polynomial or a
366list of polynomials in variables VARS, over the ring RING. The
367polynomial or list of polynomials is returned, with terms in each
368polynomial ordered according to monomial order ORDER."
369 (poly-eval (read-infix-form :stream stream) vars ring order))
370
371(defun string->poly (str vars
372 &optional
373 (ring +ring-of-integers+)
374 (order #'lex>))
375 "Converts a string STR to a polynomial in variables VARS."
376 (with-input-from-string (s str)
377 (read-poly vars :stream s :ring ring :order order)))
378
379(defun poly->alist (p)
380 "Convert a polynomial P to an association list. Thus, the format of the
381returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
382MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
383corresponding coefficient in the ring."
384 (cond
385 ((poly-p p)
386 (mapcar #'term->cons (poly-termlist p)))
387 ((and (consp p) (eq (car p) :[))
388 (cons :[ (mapcar #'poly->alist (cdr p))))))
389
390(defun string->alist (str vars
391 &optional
392 (ring +ring-of-integers+)
393 (order #'lex>))
394 "Convert a string STR representing a polynomial or polynomial list to
395an association list (... (MONOM . COEFF) ...)."
396 (poly->alist (string->poly str vars ring order)))
397
398(defun poly-equal-no-sugar-p (p q)
399 "Compare polynomials for equality, ignoring sugar."
400 (declare (type poly p q))
401 (equalp (poly-termlist p) (poly-termlist q)))
402
403(defun poly-set-equal-no-sugar-p (p q)
404 "Compare polynomial sets P and Q for equality, ignoring sugar."
405 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
406
407(defun poly-list-equal-no-sugar-p (p q)
408 "Compare polynomial lists P and Q for equality, ignoring sugar."
409 (every #'poly-equal-no-sugar-p p q))
410|#
Note: See TracBrowser for help on using the repository browser.