| 1 | ;;; -*-  Mode: Lisp -*- | 
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 3 | ;;; | 
|---|
| 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
| 5 | ;;; | 
|---|
| 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
| 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
| 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
| 9 | ;;;  (at your option) any later version. | 
|---|
| 10 | ;;; | 
|---|
| 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
| 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | ;;;  GNU General Public License for more details. | 
|---|
| 15 | ;;; | 
|---|
| 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
| 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
| 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
| 19 | ;;; | 
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 21 |  | 
|---|
| 22 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 23 | ;; | 
|---|
| 24 | ;; Polynomials | 
|---|
| 25 | ;; | 
|---|
| 26 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 27 |  | 
|---|
| 28 | (defpackage "POLYNOMIAL" | 
|---|
| 29 | (:use :cl :ring :monom :order :term #| :infix |# ) | 
|---|
| 30 | (:export "POLY" | 
|---|
| 31 | )) | 
|---|
| 32 |  | 
|---|
| 33 | (in-package :polynomial) | 
|---|
| 34 |  | 
|---|
| 35 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0))) | 
|---|
| 36 |  | 
|---|
| 37 | #| | 
|---|
| 38 | ;; | 
|---|
| 39 | ;; BOA constructor, by default constructs zero polynomial | 
|---|
| 40 | (:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist)))) | 
|---|
| 41 | (:constructor make-poly-zero (&aux (termlist nil) (sugar -1))) | 
|---|
| 42 | ;; Constructor of polynomials representing a variable | 
|---|
| 43 | (:constructor make-poly-variable (ring nvars pos &optional (power 1) | 
|---|
| 44 | &aux | 
|---|
| 45 | (termlist (list | 
|---|
| 46 | (make-term-variable ring nvars pos power))) | 
|---|
| 47 | (sugar power))) | 
|---|
| 48 | (:constructor poly-unit (ring dimension | 
|---|
| 49 | &aux | 
|---|
| 50 | (termlist (termlist-unit ring dimension)) | 
|---|
| 51 | (sugar 0)))) | 
|---|
| 52 |  | 
|---|
| 53 | |# | 
|---|
| 54 |  | 
|---|
| 55 | (defclass poly () | 
|---|
| 56 | ((termlist :initarg :termlist :accessor poly-termlist)) | 
|---|
| 57 | (:default-initargs :termlist nil)) | 
|---|
| 58 |  | 
|---|
| 59 | (defmethod print-object ((self poly) stream) | 
|---|
| 60 | (format stream "#<POLY TERMLIST=~A >" (poly-termlist self))) | 
|---|
| 61 |  | 
|---|
| 62 | (defgeneric insert-item (object item) | 
|---|
| 63 | (:method ((self poly) (item term)) | 
|---|
| 64 | (push item (poly-termlist self)) | 
|---|
| 65 | self)) | 
|---|
| 66 |  | 
|---|
| 67 |  | 
|---|
| 68 | (defgeneric append-item (object item) | 
|---|
| 69 | (:method ((self poly) (item term)) | 
|---|
| 70 | (setf (cdr (last (poly-termlist self))) (list item)) | 
|---|
| 71 | self)) | 
|---|
| 72 |  | 
|---|
| 73 | ;; Leading term | 
|---|
| 74 | (defgeneric leading-term (object) | 
|---|
| 75 | (:method ((self poly)) | 
|---|
| 76 | (car (poly-termlist self)))) | 
|---|
| 77 |  | 
|---|
| 78 | ;; Second term | 
|---|
| 79 | (defgeneric second-leading-term (object) | 
|---|
| 80 | (:method ((self poly)) | 
|---|
| 81 | (cadar (poly-termlist self)))) | 
|---|
| 82 |  | 
|---|
| 83 | ;; Leading coefficient | 
|---|
| 84 | (defgeneric leading-coefficient (object) | 
|---|
| 85 | (:method ((self poly)) | 
|---|
| 86 | (r-coeff (leading-term self)))) | 
|---|
| 87 |  | 
|---|
| 88 | ;; Second coefficient | 
|---|
| 89 | (defgeneric second-leading-coefficient (object) | 
|---|
| 90 | (:method ((self poly)) | 
|---|
| 91 | (r-coeff (second-leading-term self)))) | 
|---|
| 92 |  | 
|---|
| 93 | ;; Testing for a zero polynomial | 
|---|
| 94 | (defmethod r-zerop ((self poly)) | 
|---|
| 95 | (null (poly-termlist self))) | 
|---|
| 96 |  | 
|---|
| 97 | ;; The number of terms | 
|---|
| 98 | (defmethod r-length ((self poly)) | 
|---|
| 99 | (length (poly-termlist self))) | 
|---|
| 100 |  | 
|---|
| 101 | (defmethod multiply-by ((self poly) (other monom)) | 
|---|
| 102 | (mapc #'(lambda (term) (multiply-by term other)) | 
|---|
| 103 | (poly-termlist self)) | 
|---|
| 104 | self) | 
|---|
| 105 |  | 
|---|
| 106 | (defmethod multiply-by ((self poly) (other scalar)) | 
|---|
| 107 | (mapc #'(lambda (term) (multiply-by term other)) | 
|---|
| 108 | (poly-termlist self)) | 
|---|
| 109 | self) | 
|---|
| 110 |  | 
|---|
| 111 | (defmethod add-to ((self poly) (other poly)) | 
|---|
| 112 |  | 
|---|
| 113 | (defmethod subtract-from ((self poly) (other poly))) | 
|---|
| 114 |  | 
|---|
| 115 | (defmethod unary-uminus ((self poly))) | 
|---|
| 116 |  | 
|---|
| 117 | #| | 
|---|
| 118 |  | 
|---|
| 119 | (defun poly-standard-extension (plist &aux (k (length plist))) | 
|---|
| 120 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]." | 
|---|
| 121 | (declare (list plist) (fixnum k)) | 
|---|
| 122 | (labels ((incf-power (g i) | 
|---|
| 123 | (dolist (x (poly-termlist g)) | 
|---|
| 124 | (incf (monom-elt (term-monom x) i))) | 
|---|
| 125 | (incf (poly-sugar g)))) | 
|---|
| 126 | (setf plist (poly-list-add-variables plist k)) | 
|---|
| 127 | (dotimes (i k plist) | 
|---|
| 128 | (incf-power (nth i plist) i)))) | 
|---|
| 129 |  | 
|---|
| 130 | (defun saturation-extension (ring f plist | 
|---|
| 131 | &aux | 
|---|
| 132 | (k (length plist)) | 
|---|
| 133 | (d (monom-dimension (poly-lm (car plist)))) | 
|---|
| 134 | f-x plist-x) | 
|---|
| 135 | "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]." | 
|---|
| 136 | (declare (type ring ring)) | 
|---|
| 137 | (setf f-x (poly-list-add-variables f k) | 
|---|
| 138 | plist-x (mapcar #'(lambda (x) | 
|---|
| 139 | (setf (poly-termlist x) | 
|---|
| 140 | (nconc (poly-termlist x) | 
|---|
| 141 | (list (make-term :monom (make-monom :dimension d) | 
|---|
| 142 | :coeff (funcall (ring-uminus ring) | 
|---|
| 143 | (funcall (ring-unit ring))))))) | 
|---|
| 144 | x) | 
|---|
| 145 | (poly-standard-extension plist))) | 
|---|
| 146 | (append f-x plist-x)) | 
|---|
| 147 |  | 
|---|
| 148 |  | 
|---|
| 149 | (defun polysaturation-extension (ring f plist | 
|---|
| 150 | &aux | 
|---|
| 151 | (k (length plist)) | 
|---|
| 152 | (d (+ k (monom-dimension (poly-lm (car plist))))) | 
|---|
| 153 | ;; Add k variables to f | 
|---|
| 154 | (f (poly-list-add-variables f k)) | 
|---|
| 155 | ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK] | 
|---|
| 156 | (plist (apply #'poly-append (poly-standard-extension plist)))) | 
|---|
| 157 | "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F." | 
|---|
| 158 | ;; Add -1 as the last term | 
|---|
| 159 | (declare (type ring ring)) | 
|---|
| 160 | (setf (cdr (last (poly-termlist plist))) | 
|---|
| 161 | (list (make-term :monom (make-monom :dimension d) | 
|---|
| 162 | :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring)))))) | 
|---|
| 163 | (append f (list plist))) | 
|---|
| 164 |  | 
|---|
| 165 | (defun saturation-extension-1 (ring f p) | 
|---|
| 166 | "Calculate [F, U*P-1]. It destructively modifies F." | 
|---|
| 167 | (declare (type ring ring)) | 
|---|
| 168 | (polysaturation-extension ring f (list p))) | 
|---|
| 169 |  | 
|---|
| 170 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 171 | ;; | 
|---|
| 172 | ;; Evaluation of polynomial (prefix) expressions | 
|---|
| 173 | ;; | 
|---|
| 174 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 175 |  | 
|---|
| 176 | (defun coerce-coeff (ring expr vars) | 
|---|
| 177 | "Coerce an element of the coefficient ring to a constant polynomial." | 
|---|
| 178 | ;; Modular arithmetic handler by rat | 
|---|
| 179 | (declare (type ring ring)) | 
|---|
| 180 | (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars)) | 
|---|
| 181 | :coeff (funcall (ring-parse ring) expr))) | 
|---|
| 182 | 0)) | 
|---|
| 183 |  | 
|---|
| 184 | (defun poly-eval (expr vars | 
|---|
| 185 | &optional | 
|---|
| 186 | (ring +ring-of-integers+) | 
|---|
| 187 | (order #'lex>) | 
|---|
| 188 | (list-marker :[) | 
|---|
| 189 | &aux | 
|---|
| 190 | (ring-and-order (make-ring-and-order :ring ring :order order))) | 
|---|
| 191 | "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in | 
|---|
| 192 | variables VARS. Return the resulting polynomial or list of | 
|---|
| 193 | polynomials.  Standard arithmetical operators in form EXPR are | 
|---|
| 194 | replaced with their analogues in the ring of polynomials, and the | 
|---|
| 195 | resulting expression is evaluated, resulting in a polynomial or a list | 
|---|
| 196 | of polynomials in internal form. A similar operation in another computer | 
|---|
| 197 | algebra system could be called 'expand' or so." | 
|---|
| 198 | (declare (type ring ring)) | 
|---|
| 199 | (labels ((p-eval (arg) (poly-eval arg vars ring order)) | 
|---|
| 200 | (p-eval-scalar (arg) (poly-eval-scalar arg)) | 
|---|
| 201 | (p-eval-list (args) (mapcar #'p-eval args)) | 
|---|
| 202 | (p-add (x y) (poly-add ring-and-order x y))) | 
|---|
| 203 | (cond | 
|---|
| 204 | ((null expr) (error "Empty expression")) | 
|---|
| 205 | ((eql expr 0) (make-poly-zero)) | 
|---|
| 206 | ((member expr vars :test #'equalp) | 
|---|
| 207 | (let ((pos (position expr vars :test #'equalp))) | 
|---|
| 208 | (make-poly-variable ring (length vars) pos))) | 
|---|
| 209 | ((atom expr) | 
|---|
| 210 | (coerce-coeff ring expr vars)) | 
|---|
| 211 | ((eq (car expr) list-marker) | 
|---|
| 212 | (cons list-marker (p-eval-list (cdr expr)))) | 
|---|
| 213 | (t | 
|---|
| 214 | (case (car expr) | 
|---|
| 215 | (+ (reduce #'p-add (p-eval-list (cdr expr)))) | 
|---|
| 216 | (- (case (length expr) | 
|---|
| 217 | (1 (make-poly-zero)) | 
|---|
| 218 | (2 (poly-uminus ring (p-eval (cadr expr)))) | 
|---|
| 219 | (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr)))) | 
|---|
| 220 | (otherwise (poly-sub ring-and-order (p-eval (cadr expr)) | 
|---|
| 221 | (reduce #'p-add (p-eval-list (cddr expr))))))) | 
|---|
| 222 | (* | 
|---|
| 223 | (if (endp (cddr expr))                ;unary | 
|---|
| 224 | (p-eval (cdr expr)) | 
|---|
| 225 | (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr))))) | 
|---|
| 226 | (/ | 
|---|
| 227 | ;; A polynomial can be divided by a scalar | 
|---|
| 228 | (cond | 
|---|
| 229 | ((endp (cddr expr)) | 
|---|
| 230 | ;; A special case (/ ?), the inverse | 
|---|
| 231 | (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars)) | 
|---|
| 232 | (t | 
|---|
| 233 | (let ((num (p-eval (cadr expr))) | 
|---|
| 234 | (denom-inverse (apply (ring-div ring) | 
|---|
| 235 | (cons (funcall (ring-unit ring)) | 
|---|
| 236 | (mapcar #'p-eval-scalar (cddr expr)))))) | 
|---|
| 237 | (scalar-times-poly ring denom-inverse num))))) | 
|---|
| 238 | (expt | 
|---|
| 239 | (cond | 
|---|
| 240 | ((member (cadr expr) vars :test #'equalp) | 
|---|
| 241 | ;;Special handling of (expt var pow) | 
|---|
| 242 | (let ((pos (position (cadr expr) vars :test #'equalp))) | 
|---|
| 243 | (make-poly-variable ring (length vars) pos (caddr expr)))) | 
|---|
| 244 | ((not (and (integerp (caddr expr)) (plusp (caddr expr)))) | 
|---|
| 245 | ;; Negative power means division in coefficient ring | 
|---|
| 246 | ;; Non-integer power means non-polynomial coefficient | 
|---|
| 247 | (coerce-coeff ring expr vars)) | 
|---|
| 248 | (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr))))) | 
|---|
| 249 | (otherwise | 
|---|
| 250 | (coerce-coeff ring expr vars))))))) | 
|---|
| 251 |  | 
|---|
| 252 | (defun poly-eval-scalar (expr | 
|---|
| 253 | &optional | 
|---|
| 254 | (ring +ring-of-integers+) | 
|---|
| 255 | &aux | 
|---|
| 256 | (order #'lex>)) | 
|---|
| 257 | "Evaluate a scalar expression EXPR in ring RING." | 
|---|
| 258 | (declare (type ring ring)) | 
|---|
| 259 | (poly-lc (poly-eval expr nil ring order))) | 
|---|
| 260 |  | 
|---|
| 261 | (defun spoly (ring-and-order f g | 
|---|
| 262 | &aux | 
|---|
| 263 | (ring (ro-ring ring-and-order))) | 
|---|
| 264 | "It yields the S-polynomial of polynomials F and G." | 
|---|
| 265 | (declare (type ring-and-order ring-and-order) (type poly f g)) | 
|---|
| 266 | (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g))) | 
|---|
| 267 | (mf (monom-div lcm (poly-lm f))) | 
|---|
| 268 | (mg (monom-div lcm (poly-lm g)))) | 
|---|
| 269 | (declare (type monom mf mg)) | 
|---|
| 270 | (multiple-value-bind (c cf cg) | 
|---|
| 271 | (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g)) | 
|---|
| 272 | (declare (ignore c)) | 
|---|
| 273 | (poly-sub | 
|---|
| 274 | ring-and-order | 
|---|
| 275 | (scalar-times-poly ring cg (monom-times-poly mf f)) | 
|---|
| 276 | (scalar-times-poly ring cf (monom-times-poly mg g)))))) | 
|---|
| 277 |  | 
|---|
| 278 |  | 
|---|
| 279 | (defun poly-primitive-part (ring p) | 
|---|
| 280 | "Divide polynomial P with integer coefficients by gcd of its | 
|---|
| 281 | coefficients and return the result." | 
|---|
| 282 | (declare (type ring ring) (type poly p)) | 
|---|
| 283 | (if (poly-zerop p) | 
|---|
| 284 | (values p 1) | 
|---|
| 285 | (let ((c (poly-content ring p))) | 
|---|
| 286 | (values (make-poly-from-termlist | 
|---|
| 287 | (mapcar | 
|---|
| 288 | #'(lambda (x) | 
|---|
| 289 | (make-term :monom (term-monom x) | 
|---|
| 290 | :coeff (funcall (ring-div ring) (term-coeff x) c))) | 
|---|
| 291 | (poly-termlist p)) | 
|---|
| 292 | (poly-sugar p)) | 
|---|
| 293 | c)))) | 
|---|
| 294 |  | 
|---|
| 295 | (defun poly-content (ring p) | 
|---|
| 296 | "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure | 
|---|
| 297 | to compute the greatest common divisor." | 
|---|
| 298 | (declare (type ring ring) (type poly p)) | 
|---|
| 299 | (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p))) | 
|---|
| 300 |  | 
|---|
| 301 | (defun read-infix-form (&key (stream t)) | 
|---|
| 302 | "Parser of infix expressions with integer/rational coefficients | 
|---|
| 303 | The parser will recognize two kinds of polynomial expressions: | 
|---|
| 304 |  | 
|---|
| 305 | - polynomials in fully expanded forms with coefficients | 
|---|
| 306 | written in front of symbolic expressions; constants can be optionally | 
|---|
| 307 | enclosed in (); for example, the infix form | 
|---|
| 308 | X^2-Y^2+(-4/3)*U^2*W^3-5 | 
|---|
| 309 | parses to | 
|---|
| 310 | (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5)) | 
|---|
| 311 |  | 
|---|
| 312 | - lists of polynomials; for example | 
|---|
| 313 | [X-Y, X^2+3*Z] | 
|---|
| 314 | parses to | 
|---|
| 315 | (:[ (- X Y) (+ (EXPT X 2) (* 3 Z))) | 
|---|
| 316 | where the first symbol [ marks a list of polynomials. | 
|---|
| 317 |  | 
|---|
| 318 | -other infix expressions, for example | 
|---|
| 319 | [(X-Y)*(X+Y)/Z,(X+1)^2] | 
|---|
| 320 | parses to: | 
|---|
| 321 | (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2)) | 
|---|
| 322 | Currently this function is implemented using M. Kantrowitz's INFIX package." | 
|---|
| 323 | (read-from-string | 
|---|
| 324 | (concatenate 'string | 
|---|
| 325 | "#I(" | 
|---|
| 326 | (with-output-to-string (s) | 
|---|
| 327 | (loop | 
|---|
| 328 | (multiple-value-bind (line eof) | 
|---|
| 329 | (read-line stream t) | 
|---|
| 330 | (format s "~A" line) | 
|---|
| 331 | (when eof (return))))) | 
|---|
| 332 | ")"))) | 
|---|
| 333 |  | 
|---|
| 334 | (defun read-poly (vars &key | 
|---|
| 335 | (stream t) | 
|---|
| 336 | (ring +ring-of-integers+) | 
|---|
| 337 | (order #'lex>)) | 
|---|
| 338 | "Reads an expression in prefix form from a stream STREAM. | 
|---|
| 339 | The expression read from the strem should represent a polynomial or a | 
|---|
| 340 | list of polynomials in variables VARS, over the ring RING.  The | 
|---|
| 341 | polynomial or list of polynomials is returned, with terms in each | 
|---|
| 342 | polynomial ordered according to monomial order ORDER." | 
|---|
| 343 | (poly-eval (read-infix-form :stream stream) vars ring order)) | 
|---|
| 344 |  | 
|---|
| 345 | (defun string->poly (str vars | 
|---|
| 346 | &optional | 
|---|
| 347 | (ring +ring-of-integers+) | 
|---|
| 348 | (order #'lex>)) | 
|---|
| 349 | "Converts a string STR to a polynomial in variables VARS." | 
|---|
| 350 | (with-input-from-string (s str) | 
|---|
| 351 | (read-poly vars :stream s :ring ring :order order))) | 
|---|
| 352 |  | 
|---|
| 353 | (defun poly->alist (p) | 
|---|
| 354 | "Convert a polynomial P to an association list. Thus, the format of the | 
|---|
| 355 | returned value is  ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where | 
|---|
| 356 | MONOM[I] is a list of exponents in the monomial and COEFF[I] is the | 
|---|
| 357 | corresponding coefficient in the ring." | 
|---|
| 358 | (cond | 
|---|
| 359 | ((poly-p p) | 
|---|
| 360 | (mapcar #'term->cons (poly-termlist p))) | 
|---|
| 361 | ((and (consp p) (eq (car p) :[)) | 
|---|
| 362 | (cons :[ (mapcar #'poly->alist (cdr p)))))) | 
|---|
| 363 |  | 
|---|
| 364 | (defun string->alist (str vars | 
|---|
| 365 | &optional | 
|---|
| 366 | (ring +ring-of-integers+) | 
|---|
| 367 | (order #'lex>)) | 
|---|
| 368 | "Convert a string STR representing a polynomial or polynomial list to | 
|---|
| 369 | an association list (... (MONOM . COEFF) ...)." | 
|---|
| 370 | (poly->alist (string->poly str vars ring order))) | 
|---|
| 371 |  | 
|---|
| 372 | (defun poly-equal-no-sugar-p (p q) | 
|---|
| 373 | "Compare polynomials for equality, ignoring sugar." | 
|---|
| 374 | (declare (type poly p q)) | 
|---|
| 375 | (equalp (poly-termlist p) (poly-termlist q))) | 
|---|
| 376 |  | 
|---|
| 377 | (defun poly-set-equal-no-sugar-p (p q) | 
|---|
| 378 | "Compare polynomial sets P and Q for equality, ignoring sugar." | 
|---|
| 379 | (null (set-exclusive-or  p q :test #'poly-equal-no-sugar-p ))) | 
|---|
| 380 |  | 
|---|
| 381 | (defun poly-list-equal-no-sugar-p (p q) | 
|---|
| 382 | "Compare polynomial lists P and Q for equality, ignoring sugar." | 
|---|
| 383 | (every #'poly-equal-no-sugar-p p q)) | 
|---|
| 384 | |# | 
|---|