close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2453

Last change on this file since 2453 was 2451, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 13.1 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
23;;
24;; Polynomials
25;;
26;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
27
28(defpackage "POLYNOMIAL"
29 (:use :cl :ring :monom :order :term :termlist :infix)
30 (:export "POLY"
31 ))
32
33(in-package :polynomial)
34
35(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
36
37#|
38 ;;
39 ;; BOA constructor, by default constructs zero polynomial
40 (:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist))))
41 (:constructor make-poly-zero (&aux (termlist nil) (sugar -1)))
42 ;; Constructor of polynomials representing a variable
43 (:constructor make-poly-variable (ring nvars pos &optional (power 1)
44 &aux
45 (termlist (list
46 (make-term-variable ring nvars pos power)))
47 (sugar power)))
48 (:constructor poly-unit (ring dimension
49 &aux
50 (termlist (termlist-unit ring dimension))
51 (sugar 0))))
52
53|#
54
55(defclass poly ()
56 ((termlist :initarg :terms :accessor poly-termlist))
57 (:default-initargs :termlist nil))
58
59;; Leading term
60(defgeneric leading-term (object)
61 (:method ((self poly))
62 (car (poly-termlist self))))
63
64;; Second term
65(defgeneric second-leading-term (object)
66 (:method ((self poly))
67 (cadar (poly-termlist self))))
68
69;; Leading coefficient
70(defgeneric leading-coefficient (object)
71 (:method ((self poly))
72 (r-coeff (leading-term self))))
73
74;; Second coefficient
75(defgeneric second-leading-coefficient (object)
76 (:method ((self poly))
77 (term-coeff (second-leading-term self))))
78
79;; Testing for a zero polynomial
80(defmethod r-zerop ((self poly))
81 (null (poly-termlist self)))
82
83;; The number of terms
84(defmethod r-length ((self poly))
85 (length (poly-termlist self)))
86
87(defgeneric multiply-by (self other)
88 (:method ((self poly) (other scalar))
89 (mapc #'(lambda (term) (multiply-by term other)) (poly-termlist self))
90 self)
91 (:method ((self poly) (other monom))
92 (mapc #'(lambda (term) (multiply-by term monom)) (poly-termlist self))
93 self))
94
95(defgeneric add-to (self other)
96 (:method ((self poly) (other poly))))
97
98(defgeneric subtract-from (self other)
99 (:method ((self poly) (other poly))))
100
101(defmethod unary-uminus (self))
102
103(defun poly-standard-extension (plist &aux (k (length plist)))
104 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
105 (declare (list plist) (fixnum k))
106 (labels ((incf-power (g i)
107 (dolist (x (poly-termlist g))
108 (incf (monom-elt (term-monom x) i)))
109 (incf (poly-sugar g))))
110 (setf plist (poly-list-add-variables plist k))
111 (dotimes (i k plist)
112 (incf-power (nth i plist) i))))
113
114(defun saturation-extension (ring f plist
115 &aux
116 (k (length plist))
117 (d (monom-dimension (poly-lm (car plist))))
118 f-x plist-x)
119 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
120 (declare (type ring ring))
121 (setf f-x (poly-list-add-variables f k)
122 plist-x (mapcar #'(lambda (x)
123 (setf (poly-termlist x)
124 (nconc (poly-termlist x)
125 (list (make-term :monom (make-monom :dimension d)
126 :coeff (funcall (ring-uminus ring)
127 (funcall (ring-unit ring)))))))
128 x)
129 (poly-standard-extension plist)))
130 (append f-x plist-x))
131
132
133(defun polysaturation-extension (ring f plist
134 &aux
135 (k (length plist))
136 (d (+ k (monom-dimension (poly-lm (car plist)))))
137 ;; Add k variables to f
138 (f (poly-list-add-variables f k))
139 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
140 (plist (apply #'poly-append (poly-standard-extension plist))))
141 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
142 ;; Add -1 as the last term
143 (declare (type ring ring))
144 (setf (cdr (last (poly-termlist plist)))
145 (list (make-term :monom (make-monom :dimension d)
146 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
147 (append f (list plist)))
148
149(defun saturation-extension-1 (ring f p)
150 "Calculate [F, U*P-1]. It destructively modifies F."
151 (declare (type ring ring))
152 (polysaturation-extension ring f (list p)))
153
154;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
155;;
156;; Evaluation of polynomial (prefix) expressions
157;;
158;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
159
160(defun coerce-coeff (ring expr vars)
161 "Coerce an element of the coefficient ring to a constant polynomial."
162 ;; Modular arithmetic handler by rat
163 (declare (type ring ring))
164 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
165 :coeff (funcall (ring-parse ring) expr)))
166 0))
167
168(defun poly-eval (expr vars
169 &optional
170 (ring +ring-of-integers+)
171 (order #'lex>)
172 (list-marker :[)
173 &aux
174 (ring-and-order (make-ring-and-order :ring ring :order order)))
175 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
176variables VARS. Return the resulting polynomial or list of
177polynomials. Standard arithmetical operators in form EXPR are
178replaced with their analogues in the ring of polynomials, and the
179resulting expression is evaluated, resulting in a polynomial or a list
180of polynomials in internal form. A similar operation in another computer
181algebra system could be called 'expand' or so."
182 (declare (type ring ring))
183 (labels ((p-eval (arg) (poly-eval arg vars ring order))
184 (p-eval-scalar (arg) (poly-eval-scalar arg))
185 (p-eval-list (args) (mapcar #'p-eval args))
186 (p-add (x y) (poly-add ring-and-order x y)))
187 (cond
188 ((null expr) (error "Empty expression"))
189 ((eql expr 0) (make-poly-zero))
190 ((member expr vars :test #'equalp)
191 (let ((pos (position expr vars :test #'equalp)))
192 (make-poly-variable ring (length vars) pos)))
193 ((atom expr)
194 (coerce-coeff ring expr vars))
195 ((eq (car expr) list-marker)
196 (cons list-marker (p-eval-list (cdr expr))))
197 (t
198 (case (car expr)
199 (+ (reduce #'p-add (p-eval-list (cdr expr))))
200 (- (case (length expr)
201 (1 (make-poly-zero))
202 (2 (poly-uminus ring (p-eval (cadr expr))))
203 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
204 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
205 (reduce #'p-add (p-eval-list (cddr expr)))))))
206 (*
207 (if (endp (cddr expr)) ;unary
208 (p-eval (cdr expr))
209 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
210 (/
211 ;; A polynomial can be divided by a scalar
212 (cond
213 ((endp (cddr expr))
214 ;; A special case (/ ?), the inverse
215 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
216 (t
217 (let ((num (p-eval (cadr expr)))
218 (denom-inverse (apply (ring-div ring)
219 (cons (funcall (ring-unit ring))
220 (mapcar #'p-eval-scalar (cddr expr))))))
221 (scalar-times-poly ring denom-inverse num)))))
222 (expt
223 (cond
224 ((member (cadr expr) vars :test #'equalp)
225 ;;Special handling of (expt var pow)
226 (let ((pos (position (cadr expr) vars :test #'equalp)))
227 (make-poly-variable ring (length vars) pos (caddr expr))))
228 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
229 ;; Negative power means division in coefficient ring
230 ;; Non-integer power means non-polynomial coefficient
231 (coerce-coeff ring expr vars))
232 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
233 (otherwise
234 (coerce-coeff ring expr vars)))))))
235
236(defun poly-eval-scalar (expr
237 &optional
238 (ring +ring-of-integers+)
239 &aux
240 (order #'lex>))
241 "Evaluate a scalar expression EXPR in ring RING."
242 (declare (type ring ring))
243 (poly-lc (poly-eval expr nil ring order)))
244
245(defun spoly (ring-and-order f g
246 &aux
247 (ring (ro-ring ring-and-order)))
248 "It yields the S-polynomial of polynomials F and G."
249 (declare (type ring-and-order ring-and-order) (type poly f g))
250 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
251 (mf (monom-div lcm (poly-lm f)))
252 (mg (monom-div lcm (poly-lm g))))
253 (declare (type monom mf mg))
254 (multiple-value-bind (c cf cg)
255 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
256 (declare (ignore c))
257 (poly-sub
258 ring-and-order
259 (scalar-times-poly ring cg (monom-times-poly mf f))
260 (scalar-times-poly ring cf (monom-times-poly mg g))))))
261
262
263(defun poly-primitive-part (ring p)
264 "Divide polynomial P with integer coefficients by gcd of its
265coefficients and return the result."
266 (declare (type ring ring) (type poly p))
267 (if (poly-zerop p)
268 (values p 1)
269 (let ((c (poly-content ring p)))
270 (values (make-poly-from-termlist
271 (mapcar
272 #'(lambda (x)
273 (make-term :monom (term-monom x)
274 :coeff (funcall (ring-div ring) (term-coeff x) c)))
275 (poly-termlist p))
276 (poly-sugar p))
277 c))))
278
279(defun poly-content (ring p)
280 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
281to compute the greatest common divisor."
282 (declare (type ring ring) (type poly p))
283 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
284
285(defun read-infix-form (&key (stream t))
286 "Parser of infix expressions with integer/rational coefficients
287The parser will recognize two kinds of polynomial expressions:
288
289- polynomials in fully expanded forms with coefficients
290 written in front of symbolic expressions; constants can be optionally
291 enclosed in (); for example, the infix form
292 X^2-Y^2+(-4/3)*U^2*W^3-5
293 parses to
294 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
295
296- lists of polynomials; for example
297 [X-Y, X^2+3*Z]
298 parses to
299 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
300 where the first symbol [ marks a list of polynomials.
301
302-other infix expressions, for example
303 [(X-Y)*(X+Y)/Z,(X+1)^2]
304parses to:
305 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
306Currently this function is implemented using M. Kantrowitz's INFIX package."
307 (read-from-string
308 (concatenate 'string
309 "#I("
310 (with-output-to-string (s)
311 (loop
312 (multiple-value-bind (line eof)
313 (read-line stream t)
314 (format s "~A" line)
315 (when eof (return)))))
316 ")")))
317
318(defun read-poly (vars &key
319 (stream t)
320 (ring +ring-of-integers+)
321 (order #'lex>))
322 "Reads an expression in prefix form from a stream STREAM.
323The expression read from the strem should represent a polynomial or a
324list of polynomials in variables VARS, over the ring RING. The
325polynomial or list of polynomials is returned, with terms in each
326polynomial ordered according to monomial order ORDER."
327 (poly-eval (read-infix-form :stream stream) vars ring order))
328
329(defun string->poly (str vars
330 &optional
331 (ring +ring-of-integers+)
332 (order #'lex>))
333 "Converts a string STR to a polynomial in variables VARS."
334 (with-input-from-string (s str)
335 (read-poly vars :stream s :ring ring :order order)))
336
337(defun poly->alist (p)
338 "Convert a polynomial P to an association list. Thus, the format of the
339returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
340MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
341corresponding coefficient in the ring."
342 (cond
343 ((poly-p p)
344 (mapcar #'term->cons (poly-termlist p)))
345 ((and (consp p) (eq (car p) :[))
346 (cons :[ (mapcar #'poly->alist (cdr p))))))
347
348(defun string->alist (str vars
349 &optional
350 (ring +ring-of-integers+)
351 (order #'lex>))
352 "Convert a string STR representing a polynomial or polynomial list to
353an association list (... (MONOM . COEFF) ...)."
354 (poly->alist (string->poly str vars ring order)))
355
356(defun poly-equal-no-sugar-p (p q)
357 "Compare polynomials for equality, ignoring sugar."
358 (declare (type poly p q))
359 (equalp (poly-termlist p) (poly-termlist q)))
360
361(defun poly-set-equal-no-sugar-p (p q)
362 "Compare polynomial sets P and Q for equality, ignoring sugar."
363 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
364
365(defun poly-list-equal-no-sugar-p (p q)
366 "Compare polynomial lists P and Q for equality, ignoring sugar."
367 (every #'poly-equal-no-sugar-p p q))
Note: See TracBrowser for help on using the repository browser.