| 1 | ;;; -*-  Mode: Lisp -*- | 
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 3 | ;;; | 
|---|
| 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
| 5 | ;;; | 
|---|
| 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
| 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
| 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
| 9 | ;;;  (at your option) any later version. | 
|---|
| 10 | ;;; | 
|---|
| 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
| 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | ;;;  GNU General Public License for more details. | 
|---|
| 15 | ;;; | 
|---|
| 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
| 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
| 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
| 19 | ;;; | 
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 21 |  | 
|---|
| 22 |  | 
|---|
| 23 | (defpackage "POLYNOMIAL" | 
|---|
| 24 | (:use :cl :ring :ring-and-order :monom :order :term :termlist :infix) | 
|---|
| 25 | (:export "POLY" | 
|---|
| 26 | "POLY-TERMLIST" | 
|---|
| 27 | "POLY-SUGAR" | 
|---|
| 28 | "POLY-RESET-SUGAR" | 
|---|
| 29 | "POLY-LT" | 
|---|
| 30 | "MAKE-POLY-FROM-TERMLIST" | 
|---|
| 31 | "MAKE-POLY-ZERO" | 
|---|
| 32 | "MAKE-POLY-VARIABLE" | 
|---|
| 33 | "POLY-UNIT" | 
|---|
| 34 | "POLY-LM" | 
|---|
| 35 | "POLY-SECOND-LM" | 
|---|
| 36 | "POLY-SECOND-LT" | 
|---|
| 37 | "POLY-LC" | 
|---|
| 38 | "POLY-SECOND-LC" | 
|---|
| 39 | "POLY-ZEROP" | 
|---|
| 40 | "POLY-LENGTH" | 
|---|
| 41 | "SCALAR-TIMES-POLY" | 
|---|
| 42 | "SCALAR-TIMES-POLY-1" | 
|---|
| 43 | "MONOM-TIMES-POLY" | 
|---|
| 44 | "TERM-TIMES-POLY" | 
|---|
| 45 | "POLY-ADD" | 
|---|
| 46 | "POLY-SUB" | 
|---|
| 47 | "POLY-UMINUS" | 
|---|
| 48 | "POLY-MUL" | 
|---|
| 49 | "POLY-EXPT" | 
|---|
| 50 | "POLY-APPEND" | 
|---|
| 51 | "POLY-NREVERSE" | 
|---|
| 52 | "POLY-REVERSE" | 
|---|
| 53 | "POLY-CONTRACT" | 
|---|
| 54 | "POLY-EXTEND" | 
|---|
| 55 | "POLY-ADD-VARIABLES" | 
|---|
| 56 | "POLY-LIST-ADD-VARIABLES" | 
|---|
| 57 | "POLY-STANDARD-EXTENSION" | 
|---|
| 58 | "SATURATION-EXTENSION" | 
|---|
| 59 | "POLYSATURATION-EXTENSION" | 
|---|
| 60 | "SATURATION-EXTENSION-1" | 
|---|
| 61 | "COERCE-COEFF" | 
|---|
| 62 | "POLY-EVAL" | 
|---|
| 63 | "POLY-EVAL-SCALAR" | 
|---|
| 64 | "SPOLY" | 
|---|
| 65 | "POLY-PRIMITIVE-PART" | 
|---|
| 66 | "POLY-CONTENT" | 
|---|
| 67 | "READ-INFIX-FORM" | 
|---|
| 68 | "READ-POLY" | 
|---|
| 69 | "STRING->POLY" | 
|---|
| 70 | "POLY->ALIST" | 
|---|
| 71 | "STRING->ALIST" | 
|---|
| 72 | "POLY-EQUAL-NO-SUGAR-P" | 
|---|
| 73 | "POLY-SET-EQUAL-NO-SUGAR-P" | 
|---|
| 74 | "POLY-LIST-EQUAL-NO-SUGAR-P" | 
|---|
| 75 | )) | 
|---|
| 76 |  | 
|---|
| 77 | (in-package :polynomial) | 
|---|
| 78 |  | 
|---|
| 79 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 80 | ;; | 
|---|
| 81 | ;; Polynomials | 
|---|
| 82 | ;; | 
|---|
| 83 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 84 |  | 
|---|
| 85 | (defstruct (poly | 
|---|
| 86 | ;; | 
|---|
| 87 | ;; BOA constructor, by default constructs zero polynomial | 
|---|
| 88 | (:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist)))) | 
|---|
| 89 | (:constructor make-poly-zero (&aux (termlist nil) (sugar -1))) | 
|---|
| 90 | ;; Constructor of polynomials representing a variable | 
|---|
| 91 | (:constructor make-poly-variable (ring nvars pos &optional (power 1) | 
|---|
| 92 | &aux | 
|---|
| 93 | (termlist (list | 
|---|
| 94 | (make-term-variable ring nvars pos power))) | 
|---|
| 95 | (sugar power))) | 
|---|
| 96 | (:constructor poly-unit (ring dimension | 
|---|
| 97 | &aux | 
|---|
| 98 | (termlist (termlist-unit ring dimension)) | 
|---|
| 99 | (sugar 0)))) | 
|---|
| 100 | (termlist nil :type list) | 
|---|
| 101 | (sugar -1 :type fixnum)) | 
|---|
| 102 |  | 
|---|
| 103 | ;; Leading term | 
|---|
| 104 | (defmacro poly-lt (p) `(car (poly-termlist ,p))) | 
|---|
| 105 |  | 
|---|
| 106 | ;; Second term | 
|---|
| 107 | (defmacro poly-second-lt (p) `(cadar (poly-termlist ,p))) | 
|---|
| 108 |  | 
|---|
| 109 | ;; Leading monomial | 
|---|
| 110 | (defun poly-lm (p) | 
|---|
| 111 | (declare (type poly p)) | 
|---|
| 112 | (term-monom (poly-lt p))) | 
|---|
| 113 |  | 
|---|
| 114 | ;; Second monomial | 
|---|
| 115 | (defun poly-second-lm (p) | 
|---|
| 116 | (declare (type poly p)) | 
|---|
| 117 | (term-monom (poly-second-lt p))) | 
|---|
| 118 |  | 
|---|
| 119 | ;; Leading coefficient | 
|---|
| 120 | (defun poly-lc (p) | 
|---|
| 121 | (declare (type poly p)) | 
|---|
| 122 | (term-coeff (poly-lt p))) | 
|---|
| 123 |  | 
|---|
| 124 | ;; Second coefficient | 
|---|
| 125 | (defun poly-second-lc (p) | 
|---|
| 126 | (declare (type poly p)) | 
|---|
| 127 | (term-coeff (poly-second-lt p))) | 
|---|
| 128 |  | 
|---|
| 129 | ;; Testing for a zero polynomial | 
|---|
| 130 | (defun poly-zerop (p) | 
|---|
| 131 | (declare (type poly p)) | 
|---|
| 132 | (null (poly-termlist p))) | 
|---|
| 133 |  | 
|---|
| 134 | ;; The number of terms | 
|---|
| 135 | (defun poly-length (p) | 
|---|
| 136 | (declare (type poly p)) | 
|---|
| 137 | (length (poly-termlist p))) | 
|---|
| 138 |  | 
|---|
| 139 | (defun poly-reset-sugar (p) | 
|---|
| 140 | "(Re)sets the sugar of a polynomial P to the sugar of (POLY-TERMLIST P). | 
|---|
| 141 | Thus, the sugar is set to the maximum sugar of all monomials of P, or -1 | 
|---|
| 142 | if P is a zero polynomial." | 
|---|
| 143 | (declare (type poly p)) | 
|---|
| 144 | (setf (poly-sugar p) (termlist-sugar (poly-termlist p))) | 
|---|
| 145 | p) | 
|---|
| 146 |  | 
|---|
| 147 | (defun scalar-times-poly (ring c p) | 
|---|
| 148 | "The scalar product of scalar C by a polynomial P. The sugar of the | 
|---|
| 149 | original polynomial becomes the sugar of the result." | 
|---|
| 150 | (declare (type ring ring) (type poly p)) | 
|---|
| 151 | (make-poly-from-termlist (scalar-times-termlist ring c (poly-termlist p)) (poly-sugar p))) | 
|---|
| 152 |  | 
|---|
| 153 | (defun scalar-times-poly-1 (ring c p) | 
|---|
| 154 | "The scalar product of scalar C by a polynomial P, omitting the head term. The sugar of the | 
|---|
| 155 | original polynomial becomes the sugar of the result." | 
|---|
| 156 | (declare (type ring ring) (type poly p)) | 
|---|
| 157 | (make-poly-from-termlist (scalar-times-termlist ring c (cdr (poly-termlist p))) (poly-sugar p))) | 
|---|
| 158 |  | 
|---|
| 159 | (defun monom-times-poly (m p) | 
|---|
| 160 | (declare (type monom m) (type poly p)) | 
|---|
| 161 | (make-poly-from-termlist | 
|---|
| 162 | (monom-times-termlist m (poly-termlist p)) | 
|---|
| 163 | (+ (poly-sugar p) (monom-sugar m)))) | 
|---|
| 164 |  | 
|---|
| 165 | (defun term-times-poly (ring term p) | 
|---|
| 166 | (declare (type ring ring) (type term term) (type poly p)) | 
|---|
| 167 | (make-poly-from-termlist | 
|---|
| 168 | (term-times-termlist ring term (poly-termlist p)) | 
|---|
| 169 | (+ (poly-sugar p) (term-sugar term)))) | 
|---|
| 170 |  | 
|---|
| 171 | (defun poly-add (ring-and-order p q) | 
|---|
| 172 | (declare (type ring-and-order ring-and-order) (type poly p q)) | 
|---|
| 173 | (make-poly-from-termlist | 
|---|
| 174 | (termlist-add ring-and-order | 
|---|
| 175 | (poly-termlist p) | 
|---|
| 176 | (poly-termlist q)) | 
|---|
| 177 | (max (poly-sugar p) (poly-sugar q)))) | 
|---|
| 178 |  | 
|---|
| 179 | (defun poly-sub (ring-and-order p q) | 
|---|
| 180 | (declare (type ring-and-order ring-and-order) (type poly p q)) | 
|---|
| 181 | (make-poly-from-termlist | 
|---|
| 182 | (termlist-sub ring-and-order (poly-termlist p) (poly-termlist q)) | 
|---|
| 183 | (max (poly-sugar p) (poly-sugar q)))) | 
|---|
| 184 |  | 
|---|
| 185 | (defun poly-uminus (ring p) | 
|---|
| 186 | (declare (type ring ring) (type poly p)) | 
|---|
| 187 | (make-poly-from-termlist | 
|---|
| 188 | (termlist-uminus ring (poly-termlist p)) | 
|---|
| 189 | (poly-sugar p))) | 
|---|
| 190 |  | 
|---|
| 191 | (defun poly-mul (ring-and-order p q) | 
|---|
| 192 | (declare (type ring-and-order ring-and-order) (type poly p q)) | 
|---|
| 193 | (make-poly-from-termlist | 
|---|
| 194 | (termlist-mul ring-and-order (poly-termlist p) (poly-termlist q)) | 
|---|
| 195 | (+ (poly-sugar p) (poly-sugar q)))) | 
|---|
| 196 |  | 
|---|
| 197 | (defun poly-expt (ring-and-order p n) | 
|---|
| 198 | (declare (type ring-and-order ring-and-order) (type poly p)) | 
|---|
| 199 | (make-poly-from-termlist (termlist-expt ring-and-order (poly-termlist p) n) (* n (poly-sugar p)))) | 
|---|
| 200 |  | 
|---|
| 201 | (defun poly-append (&rest plist) | 
|---|
| 202 | (make-poly-from-termlist (apply #'append (mapcar #'poly-termlist plist)) | 
|---|
| 203 | (apply #'max (mapcar #'poly-sugar plist)))) | 
|---|
| 204 |  | 
|---|
| 205 | (defun poly-nreverse (p) | 
|---|
| 206 | "Destructively reverse the order of terms in polynomial P. Returns P" | 
|---|
| 207 | (declare (type poly p)) | 
|---|
| 208 | (setf (poly-termlist p) (nreverse (poly-termlist p))) | 
|---|
| 209 | p) | 
|---|
| 210 |  | 
|---|
| 211 | (defun poly-reverse (p) | 
|---|
| 212 | "Returns a copy of the polynomial P with terms in reverse order." | 
|---|
| 213 | (declare (type poly p)) | 
|---|
| 214 | (make-poly-from-termlist (reverse (poly-termlist p)) | 
|---|
| 215 | (poly-sugar p))) | 
|---|
| 216 |  | 
|---|
| 217 |  | 
|---|
| 218 | (defun poly-contract (p &optional (k 1)) | 
|---|
| 219 | (declare (type poly p)) | 
|---|
| 220 | (make-poly-from-termlist (termlist-contract (poly-termlist p) k) | 
|---|
| 221 | (poly-sugar p))) | 
|---|
| 222 |  | 
|---|
| 223 | (defun poly-extend (p &optional (m (make-monom :dimension 1))) | 
|---|
| 224 | (declare (type poly p)) | 
|---|
| 225 | (make-poly-from-termlist | 
|---|
| 226 | (termlist-extend (poly-termlist p) m) | 
|---|
| 227 | (+ (poly-sugar p) (monom-sugar m)))) | 
|---|
| 228 |  | 
|---|
| 229 | (defun poly-add-variables (p k) | 
|---|
| 230 | (declare (type poly p)) | 
|---|
| 231 | (setf (poly-termlist p) (termlist-add-variables (poly-termlist p) k)) | 
|---|
| 232 | p) | 
|---|
| 233 |  | 
|---|
| 234 | (defun poly-list-add-variables (plist k) | 
|---|
| 235 | (mapcar #'(lambda (p) (poly-add-variables p k)) plist)) | 
|---|
| 236 |  | 
|---|
| 237 | (defun poly-standard-extension (plist &aux (k (length plist))) | 
|---|
| 238 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]." | 
|---|
| 239 | (declare (list plist) (fixnum k)) | 
|---|
| 240 | (labels ((incf-power (g i) | 
|---|
| 241 | (dolist (x (poly-termlist g)) | 
|---|
| 242 | (incf (monom-elt (term-monom x) i))) | 
|---|
| 243 | (incf (poly-sugar g)))) | 
|---|
| 244 | (setf plist (poly-list-add-variables plist k)) | 
|---|
| 245 | (dotimes (i k plist) | 
|---|
| 246 | (incf-power (nth i plist) i)))) | 
|---|
| 247 |  | 
|---|
| 248 | (defun saturation-extension (ring f plist | 
|---|
| 249 | &aux | 
|---|
| 250 | (k (length plist)) | 
|---|
| 251 | (d (monom-dimension (poly-lm (car plist)))) | 
|---|
| 252 | f-x plist-x) | 
|---|
| 253 | "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]." | 
|---|
| 254 | (declare (type ring ring)) | 
|---|
| 255 | (setf f-x (poly-list-add-variables f k) | 
|---|
| 256 | plist-x (mapcar #'(lambda (x) | 
|---|
| 257 | (setf (poly-termlist x) | 
|---|
| 258 | (nconc (poly-termlist x) | 
|---|
| 259 | (list (make-term :monom (make-monom :dimension d) | 
|---|
| 260 | :coeff (funcall (ring-uminus ring) | 
|---|
| 261 | (funcall (ring-unit ring))))))) | 
|---|
| 262 | x) | 
|---|
| 263 | (poly-standard-extension plist))) | 
|---|
| 264 | (append f-x plist-x)) | 
|---|
| 265 |  | 
|---|
| 266 |  | 
|---|
| 267 | (defun polysaturation-extension (ring f plist | 
|---|
| 268 | &aux | 
|---|
| 269 | (k (length plist)) | 
|---|
| 270 | (d (+ k (monom-dimension (poly-lm (car plist))))) | 
|---|
| 271 | ;; Add k variables to f | 
|---|
| 272 | (f (poly-list-add-variables f k)) | 
|---|
| 273 | ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK] | 
|---|
| 274 | (plist (apply #'poly-append (poly-standard-extension plist)))) | 
|---|
| 275 | "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F." | 
|---|
| 276 | ;; Add -1 as the last term | 
|---|
| 277 | (declare (type ring ring)) | 
|---|
| 278 | (setf (cdr (last (poly-termlist plist))) | 
|---|
| 279 | (list (make-term :monom (make-monom :dimension d) | 
|---|
| 280 | :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring)))))) | 
|---|
| 281 | (append f (list plist))) | 
|---|
| 282 |  | 
|---|
| 283 | (defun saturation-extension-1 (ring f p) | 
|---|
| 284 | "Calculate [F, U*P-1]. It destructively modifies F." | 
|---|
| 285 | (declare (type ring ring)) | 
|---|
| 286 | (polysaturation-extension ring f (list p))) | 
|---|
| 287 |  | 
|---|
| 288 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 289 | ;; | 
|---|
| 290 | ;; Evaluation of polynomial (prefix) expressions | 
|---|
| 291 | ;; | 
|---|
| 292 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 293 |  | 
|---|
| 294 | (defun coerce-coeff (ring expr vars) | 
|---|
| 295 | "Coerce an element of the coefficient ring to a constant polynomial." | 
|---|
| 296 | ;; Modular arithmetic handler by rat | 
|---|
| 297 | (declare (type ring ring)) | 
|---|
| 298 | (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars)) | 
|---|
| 299 | :coeff (funcall (ring-parse ring) expr))) | 
|---|
| 300 | 0)) | 
|---|
| 301 |  | 
|---|
| 302 | (defun poly-eval (expr vars | 
|---|
| 303 | &optional | 
|---|
| 304 | (ring +ring-of-integers+) | 
|---|
| 305 | (order #'lex>) | 
|---|
| 306 | (list-marker :[) | 
|---|
| 307 | &aux | 
|---|
| 308 | (ring-and-order (make-ring-and-order :ring ring :order order))) | 
|---|
| 309 | "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in | 
|---|
| 310 | variables VARS. Return the resulting polynomial or list of | 
|---|
| 311 | polynomials.  Standard arithmetical operators in form EXPR are | 
|---|
| 312 | replaced with their analogues in the ring of polynomials, and the | 
|---|
| 313 | resulting expression is evaluated, resulting in a polynomial or a list | 
|---|
| 314 | of polynomials in internal form. A similar operation in another computer | 
|---|
| 315 | algebra system could be called 'expand' or so." | 
|---|
| 316 | (declare (type ring ring)) | 
|---|
| 317 | (labels ((p-eval (arg) (poly-eval arg vars ring order)) | 
|---|
| 318 | (p-eval-scalar (arg) (poly-eval-scalar arg)) | 
|---|
| 319 | (p-eval-list (args) (mapcar #'p-eval args)) | 
|---|
| 320 | (p-add (x y) (poly-add ring-and-order x y))) | 
|---|
| 321 | (cond | 
|---|
| 322 | ((null expr) (error "Empty expression")) | 
|---|
| 323 | ((eql expr 0) (make-poly-zero)) | 
|---|
| 324 | ((member expr vars :test #'equalp) | 
|---|
| 325 | (let ((pos (position expr vars :test #'equalp))) | 
|---|
| 326 | (make-poly-variable ring (length vars) pos))) | 
|---|
| 327 | ((atom expr) | 
|---|
| 328 | (coerce-coeff ring expr vars)) | 
|---|
| 329 | ((eq (car expr) list-marker) | 
|---|
| 330 | (cons list-marker (p-eval-list (cdr expr)))) | 
|---|
| 331 | (t | 
|---|
| 332 | (case (car expr) | 
|---|
| 333 | (+ (reduce #'p-add (p-eval-list (cdr expr)))) | 
|---|
| 334 | (- (case (length expr) | 
|---|
| 335 | (1 (make-poly-zero)) | 
|---|
| 336 | (2 (poly-uminus ring (p-eval (cadr expr)))) | 
|---|
| 337 | (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr)))) | 
|---|
| 338 | (otherwise (poly-sub ring-and-order (p-eval (cadr expr)) | 
|---|
| 339 | (reduce #'p-add (p-eval-list (cddr expr))))))) | 
|---|
| 340 | (* | 
|---|
| 341 | (if (endp (cddr expr))                ;unary | 
|---|
| 342 | (p-eval (cdr expr)) | 
|---|
| 343 | (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr))))) | 
|---|
| 344 | (/ | 
|---|
| 345 | ;; A polynomial can be divided by a scalar | 
|---|
| 346 | (cond | 
|---|
| 347 | ((endp (cddr expr)) | 
|---|
| 348 | ;; A special case (/ ?), the inverse | 
|---|
| 349 | (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars)) | 
|---|
| 350 | (t | 
|---|
| 351 | (let ((num (p-eval (cadr expr))) | 
|---|
| 352 | (denom-inverse (apply (ring-div ring) | 
|---|
| 353 | (cons (funcall (ring-unit ring)) | 
|---|
| 354 | (mapcar #'p-eval-scalar (cddr expr)))))) | 
|---|
| 355 | (scalar-times-poly ring denom-inverse num))))) | 
|---|
| 356 | (expt | 
|---|
| 357 | (cond | 
|---|
| 358 | ((member (cadr expr) vars :test #'equalp) | 
|---|
| 359 | ;;Special handling of (expt var pow) | 
|---|
| 360 | (let ((pos (position (cadr expr) vars :test #'equalp))) | 
|---|
| 361 | (make-poly-variable ring (length vars) pos (caddr expr)))) | 
|---|
| 362 | ((not (and (integerp (caddr expr)) (plusp (caddr expr)))) | 
|---|
| 363 | ;; Negative power means division in coefficient ring | 
|---|
| 364 | ;; Non-integer power means non-polynomial coefficient | 
|---|
| 365 | (coerce-coeff ring expr vars)) | 
|---|
| 366 | (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr))))) | 
|---|
| 367 | (otherwise | 
|---|
| 368 | (coerce-coeff ring expr vars))))))) | 
|---|
| 369 |  | 
|---|
| 370 | (defun poly-eval-scalar (expr | 
|---|
| 371 | &optional | 
|---|
| 372 | (ring +ring-of-integers+) | 
|---|
| 373 | &aux | 
|---|
| 374 | (order #'lex>)) | 
|---|
| 375 | "Evaluate a scalar expression EXPR in ring RING." | 
|---|
| 376 | (declare (type ring ring)) | 
|---|
| 377 | (poly-lc (poly-eval expr nil ring order))) | 
|---|
| 378 |  | 
|---|
| 379 | (defun spoly (ring-and-order f g | 
|---|
| 380 | &aux | 
|---|
| 381 | (ring (ro-ring ring-and-order))) | 
|---|
| 382 | "It yields the S-polynomial of polynomials F and G." | 
|---|
| 383 | (declare (type ring-and-order ring-and-order) (type poly f g)) | 
|---|
| 384 | (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g))) | 
|---|
| 385 | (mf (monom-div lcm (poly-lm f))) | 
|---|
| 386 | (mg (monom-div lcm (poly-lm g)))) | 
|---|
| 387 | (declare (type monom mf mg)) | 
|---|
| 388 | (multiple-value-bind (c cf cg) | 
|---|
| 389 | (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g)) | 
|---|
| 390 | (declare (ignore c)) | 
|---|
| 391 | (poly-sub | 
|---|
| 392 | ring-and-order | 
|---|
| 393 | (scalar-times-poly ring cg (monom-times-poly mf f)) | 
|---|
| 394 | (scalar-times-poly ring cf (monom-times-poly mg g)))))) | 
|---|
| 395 |  | 
|---|
| 396 |  | 
|---|
| 397 | (defun poly-primitive-part (ring p) | 
|---|
| 398 | "Divide polynomial P with integer coefficients by gcd of its | 
|---|
| 399 | coefficients and return the result." | 
|---|
| 400 | (declare (type ring ring) (type poly p)) | 
|---|
| 401 | (if (poly-zerop p) | 
|---|
| 402 | (values p 1) | 
|---|
| 403 | (let ((c (poly-content ring p))) | 
|---|
| 404 | (values (make-poly-from-termlist | 
|---|
| 405 | (mapcar | 
|---|
| 406 | #'(lambda (x) | 
|---|
| 407 | (make-term :monom (term-monom x) | 
|---|
| 408 | :coeff (funcall (ring-div ring) (term-coeff x) c))) | 
|---|
| 409 | (poly-termlist p)) | 
|---|
| 410 | (poly-sugar p)) | 
|---|
| 411 | c)))) | 
|---|
| 412 |  | 
|---|
| 413 | (defun poly-content (ring p) | 
|---|
| 414 | "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure | 
|---|
| 415 | to compute the greatest common divisor." | 
|---|
| 416 | (declare (type ring ring) (type poly p)) | 
|---|
| 417 | (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p))) | 
|---|
| 418 |  | 
|---|
| 419 | (defun read-infix-form (&key (stream t)) | 
|---|
| 420 | "Parser of infix expressions with integer/rational coefficients | 
|---|
| 421 | The parser will recognize two kinds of polynomial expressions: | 
|---|
| 422 |  | 
|---|
| 423 | - polynomials in fully expanded forms with coefficients | 
|---|
| 424 | written in front of symbolic expressions; constants can be optionally | 
|---|
| 425 | enclosed in (); for example, the infix form | 
|---|
| 426 | X^2-Y^2+(-4/3)*U^2*W^3-5 | 
|---|
| 427 | parses to | 
|---|
| 428 | (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5)) | 
|---|
| 429 |  | 
|---|
| 430 | - lists of polynomials; for example | 
|---|
| 431 | [X-Y, X^2+3*Z] | 
|---|
| 432 | parses to | 
|---|
| 433 | (:[ (- X Y) (+ (EXPT X 2) (* 3 Z))) | 
|---|
| 434 | where the first symbol [ marks a list of polynomials. | 
|---|
| 435 |  | 
|---|
| 436 | -other infix expressions, for example | 
|---|
| 437 | [(X-Y)*(X+Y)/Z,(X+1)^2] | 
|---|
| 438 | parses to: | 
|---|
| 439 | (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2)) | 
|---|
| 440 | Currently this function is implemented using M. Kantrowitz's INFIX package." | 
|---|
| 441 | (read-from-string | 
|---|
| 442 | (concatenate 'string | 
|---|
| 443 | "#I(" | 
|---|
| 444 | (with-output-to-string (s) | 
|---|
| 445 | (loop | 
|---|
| 446 | (multiple-value-bind (line eof) | 
|---|
| 447 | (read-line stream t) | 
|---|
| 448 | (format s "~A" line) | 
|---|
| 449 | (when eof (return))))) | 
|---|
| 450 | ")"))) | 
|---|
| 451 |  | 
|---|
| 452 | (defun read-poly (vars &key | 
|---|
| 453 | (stream t) | 
|---|
| 454 | (ring +ring-of-integers+) | 
|---|
| 455 | (order #'lex>)) | 
|---|
| 456 | "Reads an expression in prefix form from a stream STREAM. | 
|---|
| 457 | The expression read from the strem should represent a polynomial or a | 
|---|
| 458 | list of polynomials in variables VARS, over the ring RING.  The | 
|---|
| 459 | polynomial or list of polynomials is returned, with terms in each | 
|---|
| 460 | polynomial ordered according to monomial order ORDER." | 
|---|
| 461 | (poly-eval (read-infix-form :stream stream) vars ring order)) | 
|---|
| 462 |  | 
|---|
| 463 | (defun string->poly (str vars | 
|---|
| 464 | &optional | 
|---|
| 465 | (ring +ring-of-integers+) | 
|---|
| 466 | (order #'lex>)) | 
|---|
| 467 | "Converts a string STR to a polynomial in variables VARS." | 
|---|
| 468 | (with-input-from-string (s str) | 
|---|
| 469 | (read-poly vars :stream s :ring ring :order order))) | 
|---|
| 470 |  | 
|---|
| 471 | (defun poly->alist (p) | 
|---|
| 472 | "Convert a polynomial P to an association list. Thus, the format of the | 
|---|
| 473 | returned value is  ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where | 
|---|
| 474 | MONOM[I] is a list of exponents in the monomial and COEFF[I] is the | 
|---|
| 475 | corresponding coefficient in the ring." | 
|---|
| 476 | (cond | 
|---|
| 477 | ((poly-p p) | 
|---|
| 478 | (mapcar #'term->cons (poly-termlist p))) | 
|---|
| 479 | ((and (consp p) (eq (car p) :[)) | 
|---|
| 480 | (cons :[ (mapcar #'poly->alist (cdr p)))))) | 
|---|
| 481 |  | 
|---|
| 482 | (defun string->alist (str vars | 
|---|
| 483 | &optional | 
|---|
| 484 | (ring +ring-of-integers+) | 
|---|
| 485 | (order #'lex>)) | 
|---|
| 486 | "Convert a string STR representing a polynomial or polynomial list to | 
|---|
| 487 | an association list (... (MONOM . COEFF) ...)." | 
|---|
| 488 | (poly->alist (string->poly str vars ring order))) | 
|---|
| 489 |  | 
|---|
| 490 | (defun poly-equal-no-sugar-p (p q) | 
|---|
| 491 | "Compare polynomials for equality, ignoring sugar." | 
|---|
| 492 | (declare (type poly p q)) | 
|---|
| 493 | (equalp (poly-termlist p) (poly-termlist q))) | 
|---|
| 494 |  | 
|---|
| 495 | (defun poly-set-equal-no-sugar-p (p q) | 
|---|
| 496 | "Compare polynomial sets P and Q for equality, ignoring sugar." | 
|---|
| 497 | (null (set-exclusive-or  p q :test #'poly-equal-no-sugar-p ))) | 
|---|
| 498 |  | 
|---|
| 499 | (defun poly-list-equal-no-sugar-p (p q) | 
|---|
| 500 | "Compare polynomial lists P and Q for equality, ignoring sugar." | 
|---|
| 501 | (declare (type poly p q)) | 
|---|
| 502 | (every #'poly-equal-no-sugar-p p q)) | 
|---|