;;; -*- Mode: Lisp -*- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik ;;; ;;; This program is free software; you can redistribute it and/or modify ;;; it under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 2 of the License, or ;;; (at your option) any later version. ;;; ;;; This program is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with this program; if not, write to the Free Software ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defpackage "POLYNOMIAL" (:use :cl :ring :monom :order :term #| :infix |# ) (:export "POLY" "POLY-TERMLIST" "POLY-TERM-ORDER") (:documentation "Implements polynomials")) (in-package :polynomial) (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0))) (defclass poly () ((termlist :initarg :termlist :accessor poly-termlist) (order :initarg :order :accessor poly-term-order)) (:default-initargs :termlist nil :order #'lex>)) (defmethod print-object ((self poly) stream) (format stream "#" (poly-termlist self) (poly-term-order self))) (defmethod insert-item ((self poly) (item term)) (push item (poly-termlist self)) self) (defmethod append-item ((self poly) (item term)) (setf (cdr (last (poly-termlist self))) (list item)) self) ;; Leading term (defgeneric leading-term (object) (:method ((self poly)) (car (poly-termlist self))) (:documentation "The leading term of a polynomial, or NIL for zero polynomial.")) ;; Second term (defgeneric second-leading-term (object) (:method ((self poly)) (cadar (poly-termlist self))) (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term.")) ;; Leading coefficient (defgeneric leading-coefficient (object) (:method ((self poly)) (r-coeff (leading-term self))) (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial.")) ;; Second coefficient (defgeneric second-leading-coefficient (object) (:method ((self poly)) (r-coeff (second-leading-term self))) (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term.")) ;; Testing for a zero polynomial (defmethod r-zerop ((self poly)) (null (poly-termlist self))) ;; The number of terms (defmethod r-length ((self poly)) (length (poly-termlist self))) (defmethod multiply-by ((self poly) (other monom)) (mapc #'(lambda (term) (multiply-by term other)) (poly-termlist self)) self) (defmethod multiply-by ((self poly) (other scalar)) (mapc #'(lambda (term) (multiply-by term other)) (poly-termlist self)) self) (defun fast-addition (p q order-fn add-fun) (macrolet ((lt (x) `(cadr ,x)) (lc (x) `(r-coeff (cadr ,x)))) (do ((p p) (q q)) ((or (endp (cdr p)) (endp (cdr q))) p) (multiple-value-bind (greater-p equal-p) (funcall order-fn (lt q) (lt p)) (cond (greater-p (rotatef (cdr p) (cdr q))) (equal-p (let ((s (funcall add-fun (lc p) (lc q)))) (if (r-zerop s) (setf (cdr p) (cddr p)) (setf (lc p) s q (cdr q))))))) (setf p (cdr p))))) (defmacro def-additive-operation-method (method-name &optional (doc-string nil doc-string-supplied-p)) "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM." `(defmethod ,method-name ((self poly) (other poly)) ,@(when doc-string-supplied-p `(,doc-string)) (with-slots ((termlist1 termlist) (order1 order)) self (with-slots ((termlist2 termlist) (order2 order)) other ;; Ensure orders are compatible (unless (eq order1 order2) (setf termlist2 (sort termlist2 order1) order2 order1)) ;; Create dummy head (push nil termlist1) (push nil termlist2) (fast-addition termlist1 termlist2 order1 #',method-name) ;; Remove dummy head (pop termlist1))) self)) (def-additive-operation-method add-to "Adds to polynomial SELF another polynomial OTHER. This operation destructively modifies both polynomials. The result is stored in SELF. This implementation does no consing, entirely reusing the sells of SELF and OTHER.") (def-additive-operation-method subtract-from "Subtracts from polynomial SELF another polynomial OTHER. This operation destructively modifies both polynomials. The result is stored in SELF. This implementation does no consing, entirely reusing the sells of SELF and OTHER.") (defmethod unary-uminus ((self poly))) #| (defun poly-standard-extension (plist &aux (k (length plist))) "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]." (declare (list plist) (fixnum k)) (labels ((incf-power (g i) (dolist (x (poly-termlist g)) (incf (monom-elt (term-monom x) i))) (incf (poly-sugar g)))) (setf plist (poly-list-add-variables plist k)) (dotimes (i k plist) (incf-power (nth i plist) i)))) (defun saturation-extension (ring f plist &aux (k (length plist)) (d (monom-dimension (poly-lm (car plist)))) f-x plist-x) "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]." (declare (type ring ring)) (setf f-x (poly-list-add-variables f k) plist-x (mapcar #'(lambda (x) (setf (poly-termlist x) (nconc (poly-termlist x) (list (make-term :monom (make-monom :dimension d) :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))) x) (poly-standard-extension plist))) (append f-x plist-x)) (defun polysaturation-extension (ring f plist &aux (k (length plist)) (d (+ k (monom-dimension (poly-lm (car plist))))) ;; Add k variables to f (f (poly-list-add-variables f k)) ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK] (plist (apply #'poly-append (poly-standard-extension plist)))) "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F." ;; Add -1 as the last term (declare (type ring ring)) (setf (cdr (last (poly-termlist plist))) (list (make-term :monom (make-monom :dimension d) :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring)))))) (append f (list plist))) (defun saturation-extension-1 (ring f p) "Calculate [F, U*P-1]. It destructively modifies F." (declare (type ring ring)) (polysaturation-extension ring f (list p))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Evaluation of polynomial (prefix) expressions ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defun coerce-coeff (ring expr vars) "Coerce an element of the coefficient ring to a constant polynomial." ;; Modular arithmetic handler by rat (declare (type ring ring)) (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars)) :coeff (funcall (ring-parse ring) expr))) 0)) (defun poly-eval (expr vars &optional (ring +ring-of-integers+) (order #'lex>) (list-marker :[) &aux (ring-and-order (make-ring-and-order :ring ring :order order))) "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in variables VARS. Return the resulting polynomial or list of polynomials. Standard arithmetical operators in form EXPR are replaced with their analogues in the ring of polynomials, and the resulting expression is evaluated, resulting in a polynomial or a list of polynomials in internal form. A similar operation in another computer algebra system could be called 'expand' or so." (declare (type ring ring)) (labels ((p-eval (arg) (poly-eval arg vars ring order)) (p-eval-scalar (arg) (poly-eval-scalar arg)) (p-eval-list (args) (mapcar #'p-eval args)) (p-add (x y) (poly-add ring-and-order x y))) (cond ((null expr) (error "Empty expression")) ((eql expr 0) (make-poly-zero)) ((member expr vars :test #'equalp) (let ((pos (position expr vars :test #'equalp))) (make-poly-variable ring (length vars) pos))) ((atom expr) (coerce-coeff ring expr vars)) ((eq (car expr) list-marker) (cons list-marker (p-eval-list (cdr expr)))) (t (case (car expr) (+ (reduce #'p-add (p-eval-list (cdr expr)))) (- (case (length expr) (1 (make-poly-zero)) (2 (poly-uminus ring (p-eval (cadr expr)))) (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr)))) (otherwise (poly-sub ring-and-order (p-eval (cadr expr)) (reduce #'p-add (p-eval-list (cddr expr))))))) (* (if (endp (cddr expr)) ;unary (p-eval (cdr expr)) (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr))))) (/ ;; A polynomial can be divided by a scalar (cond ((endp (cddr expr)) ;; A special case (/ ?), the inverse (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars)) (t (let ((num (p-eval (cadr expr))) (denom-inverse (apply (ring-div ring) (cons (funcall (ring-unit ring)) (mapcar #'p-eval-scalar (cddr expr)))))) (scalar-times-poly ring denom-inverse num))))) (expt (cond ((member (cadr expr) vars :test #'equalp) ;;Special handling of (expt var pow) (let ((pos (position (cadr expr) vars :test #'equalp))) (make-poly-variable ring (length vars) pos (caddr expr)))) ((not (and (integerp (caddr expr)) (plusp (caddr expr)))) ;; Negative power means division in coefficient ring ;; Non-integer power means non-polynomial coefficient (coerce-coeff ring expr vars)) (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr))))) (otherwise (coerce-coeff ring expr vars))))))) (defun poly-eval-scalar (expr &optional (ring +ring-of-integers+) &aux (order #'lex>)) "Evaluate a scalar expression EXPR in ring RING." (declare (type ring ring)) (poly-lc (poly-eval expr nil ring order))) (defun spoly (ring-and-order f g &aux (ring (ro-ring ring-and-order))) "It yields the S-polynomial of polynomials F and G." (declare (type ring-and-order ring-and-order) (type poly f g)) (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g))) (mf (monom-div lcm (poly-lm f))) (mg (monom-div lcm (poly-lm g)))) (declare (type monom mf mg)) (multiple-value-bind (c cf cg) (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g)) (declare (ignore c)) (poly-sub ring-and-order (scalar-times-poly ring cg (monom-times-poly mf f)) (scalar-times-poly ring cf (monom-times-poly mg g)))))) (defun poly-primitive-part (ring p) "Divide polynomial P with integer coefficients by gcd of its coefficients and return the result." (declare (type ring ring) (type poly p)) (if (poly-zerop p) (values p 1) (let ((c (poly-content ring p))) (values (make-poly-from-termlist (mapcar #'(lambda (x) (make-term :monom (term-monom x) :coeff (funcall (ring-div ring) (term-coeff x) c))) (poly-termlist p)) (poly-sugar p)) c)))) (defun poly-content (ring p) "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure to compute the greatest common divisor." (declare (type ring ring) (type poly p)) (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p))) (defun read-infix-form (&key (stream t)) "Parser of infix expressions with integer/rational coefficients The parser will recognize two kinds of polynomial expressions: - polynomials in fully expanded forms with coefficients written in front of symbolic expressions; constants can be optionally enclosed in (); for example, the infix form X^2-Y^2+(-4/3)*U^2*W^3-5 parses to (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5)) - lists of polynomials; for example [X-Y, X^2+3*Z] parses to (:[ (- X Y) (+ (EXPT X 2) (* 3 Z))) where the first symbol [ marks a list of polynomials. -other infix expressions, for example [(X-Y)*(X+Y)/Z,(X+1)^2] parses to: (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2)) Currently this function is implemented using M. Kantrowitz's INFIX package." (read-from-string (concatenate 'string "#I(" (with-output-to-string (s) (loop (multiple-value-bind (line eof) (read-line stream t) (format s "~A" line) (when eof (return))))) ")"))) (defun read-poly (vars &key (stream t) (ring +ring-of-integers+) (order #'lex>)) "Reads an expression in prefix form from a stream STREAM. The expression read from the strem should represent a polynomial or a list of polynomials in variables VARS, over the ring RING. The polynomial or list of polynomials is returned, with terms in each polynomial ordered according to monomial order ORDER." (poly-eval (read-infix-form :stream stream) vars ring order)) (defun string->poly (str vars &optional (ring +ring-of-integers+) (order #'lex>)) "Converts a string STR to a polynomial in variables VARS." (with-input-from-string (s str) (read-poly vars :stream s :ring ring :order order))) (defun poly->alist (p) "Convert a polynomial P to an association list. Thus, the format of the returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where MONOM[I] is a list of exponents in the monomial and COEFF[I] is the corresponding coefficient in the ring." (cond ((poly-p p) (mapcar #'term->cons (poly-termlist p))) ((and (consp p) (eq (car p) :[)) (cons :[ (mapcar #'poly->alist (cdr p)))))) (defun string->alist (str vars &optional (ring +ring-of-integers+) (order #'lex>)) "Convert a string STR representing a polynomial or polynomial list to an association list (... (MONOM . COEFF) ...)." (poly->alist (string->poly str vars ring order))) (defun poly-equal-no-sugar-p (p q) "Compare polynomials for equality, ignoring sugar." (declare (type poly p q)) (equalp (poly-termlist p) (poly-termlist q))) (defun poly-set-equal-no-sugar-p (p q) "Compare polynomial sets P and Q for equality, ignoring sugar." (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p ))) (defun poly-list-equal-no-sugar-p (p q) "Compare polynomial lists P and Q for equality, ignoring sugar." (every #'poly-equal-no-sugar-p p q)) |#