| 1 | ;;----------------------------------------------------------------
|
|---|
| 2 | ;;; -*- Mode: Lisp -*-
|
|---|
| 3 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 4 | ;;;
|
|---|
| 5 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
|---|
| 6 | ;;;
|
|---|
| 7 | ;;; This program is free software; you can redistribute it and/or modify
|
|---|
| 8 | ;;; it under the terms of the GNU General Public License as published by
|
|---|
| 9 | ;;; the Free Software Foundation; either version 2 of the License, or
|
|---|
| 10 | ;;; (at your option) any later version.
|
|---|
| 11 | ;;;
|
|---|
| 12 | ;;; This program is distributed in the hope that it will be useful,
|
|---|
| 13 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 14 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 15 | ;;; GNU General Public License for more details.
|
|---|
| 16 | ;;;
|
|---|
| 17 | ;;; You should have received a copy of the GNU General Public License
|
|---|
| 18 | ;;; along with this program; if not, write to the Free Software
|
|---|
| 19 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|---|
| 20 | ;;;
|
|---|
| 21 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 22 |
|
|---|
| 23 | (defpackage "POLYNOMIAL"
|
|---|
| 24 | (:use :cl :utils :monom :copy)
|
|---|
| 25 | (:export "POLY"
|
|---|
| 26 | "POLY-DIMENSION"
|
|---|
| 27 | "POLY-TERMLIST"
|
|---|
| 28 | "POLY-TERM-ORDER"
|
|---|
| 29 | "POLY-INSERT-TERM"
|
|---|
| 30 | "SCALAR-MULTIPLY-BY"
|
|---|
| 31 | "SCALAR-DIVIDE-BY"
|
|---|
| 32 | "LEADING-TERM"
|
|---|
| 33 | "LEADING-MONOMIAL"
|
|---|
| 34 | "LEADING-COEFFICIENT"
|
|---|
| 35 | "SECOND-LEADING-TERM"
|
|---|
| 36 | "SECOND-LEADING-MONOMIAL"
|
|---|
| 37 | "SECOND-LEADING-COEFFICIENT"
|
|---|
| 38 | "ADD-TO"
|
|---|
| 39 | "ADD"
|
|---|
| 40 | "SUBTRACT-FROM"
|
|---|
| 41 | "SUBTRACT"
|
|---|
| 42 | "CHANGE-TERM-ORDER"
|
|---|
| 43 | "STANDARD-EXTENSION"
|
|---|
| 44 | "STANDARD-EXTENSION-1"
|
|---|
| 45 | "STANDARD-SUM"
|
|---|
| 46 | "SATURATION-EXTENSION"
|
|---|
| 47 | "ALIST->POLY"
|
|---|
| 48 | "->INFIX"
|
|---|
| 49 | "UNIVERSAL-EZGCD"
|
|---|
| 50 | "S-POLYNOMIAL"
|
|---|
| 51 | "POLY-CONTENT"
|
|---|
| 52 | "POLY-PRIMITIVE-PART"
|
|---|
| 53 | "SATURATION-EXTENSION-1"
|
|---|
| 54 | "MAKE-POLY-VARIABLE"
|
|---|
| 55 | "MAKE-POLY-CONSTANT"
|
|---|
| 56 | "UNIVERSAL-EXPT"
|
|---|
| 57 | "UNIVERSAL-EQUALP"
|
|---|
| 58 | "POLY-LENGTH"
|
|---|
| 59 | "POLY-P"
|
|---|
| 60 | "+LIST-MARKER+"
|
|---|
| 61 | "POLY-EVAL")
|
|---|
| 62 | (:documentation "Implements polynomials. A polynomial is essentially
|
|---|
| 63 | a mapping of monomials of the same degree to coefficients. The
|
|---|
| 64 | momomials are ordered according to a monomial order."))
|
|---|
| 65 |
|
|---|
| 66 | (in-package :polynomial)
|
|---|
| 67 |
|
|---|
| 68 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
|
|---|
| 69 |
|
|---|
| 70 | (defclass poly ()
|
|---|
| 71 | ((dimension :initform nil
|
|---|
| 72 | :initarg :dimension
|
|---|
| 73 | :accessor poly-dimension
|
|---|
| 74 | :documentation "Shared dimension of all terms, the number of variables")
|
|---|
| 75 | (termlist :initform nil :initarg :termlist :accessor poly-termlist
|
|---|
| 76 | :documentation "List of terms.")
|
|---|
| 77 | (order :initform #'lex> :initarg :order :accessor poly-term-order
|
|---|
| 78 | :documentation "Monomial/term order."))
|
|---|
| 79 | (:default-initargs :dimension nil :termlist nil :order #'lex>)
|
|---|
| 80 | (:documentation "A polynomial with a list of terms TERMLIST, ordered
|
|---|
| 81 | according to term order ORDER, which defaults to LEX>."))
|
|---|
| 82 |
|
|---|
| 83 | (defmethod print-object ((self poly) stream)
|
|---|
| 84 | (print-unreadable-object (self stream :type t :identity t)
|
|---|
| 85 | (with-accessors ((dimension poly-dimension)
|
|---|
| 86 | (termlist poly-termlist)
|
|---|
| 87 | (order poly-term-order))
|
|---|
| 88 | self
|
|---|
| 89 | (format stream "DIMENSION=~A TERMLIST=~A ORDER=~A"
|
|---|
| 90 | dimension termlist order))))
|
|---|
| 91 |
|
|---|
| 92 | (defgeneric change-term-order (self other)
|
|---|
| 93 | (:documentation "Change term order of SELF to the term order of OTHER.")
|
|---|
| 94 | (:method ((self poly) (other poly))
|
|---|
| 95 | (unless (eq (poly-term-order self) (poly-term-order other))
|
|---|
| 96 | (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
|
|---|
| 97 | (poly-term-order self) (poly-term-order other)))
|
|---|
| 98 | self))
|
|---|
| 99 |
|
|---|
| 100 | (defgeneric poly-insert-term (self term)
|
|---|
| 101 | (:documentation "Insert a term TERM into SELF before all other
|
|---|
| 102 | terms. Order is not enforced.")
|
|---|
| 103 | (:method ((self poly) (term term))
|
|---|
| 104 | (cond ((null (poly-dimension self))
|
|---|
| 105 | (setf (poly-dimension self) (monom-dimension term)))
|
|---|
| 106 | (t (assert (= (poly-dimension self) (monom-dimension term)))))
|
|---|
| 107 | (push term (poly-termlist self))
|
|---|
| 108 | self))
|
|---|
| 109 |
|
|---|
| 110 | (defgeneric poly-append-term (self term)
|
|---|
| 111 | (:documentation "Append a term TERM to SELF after all other terms. Order is not enforced.")
|
|---|
| 112 | (:method ((self poly) (term term))
|
|---|
| 113 | (cond ((null (poly-dimension self))
|
|---|
| 114 | (setf (poly-dimension self) (monom-dimension term)))
|
|---|
| 115 | (t (assert (= (poly-dimension self) (monom-dimension term)))))
|
|---|
| 116 | (setf (cdr (last (poly-termlist self))) (list term))
|
|---|
| 117 | self))
|
|---|
| 118 |
|
|---|
| 119 | (defun alist->poly (alist &aux (poly (make-instance 'poly)))
|
|---|
| 120 | "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...).
|
|---|
| 121 | It can be used to enter simple polynomials by hand, e.g the polynomial
|
|---|
| 122 | in two variables, X and Y, given in standard notation as:
|
|---|
| 123 |
|
|---|
| 124 | 3*X^2*Y^3+2*Y+7
|
|---|
| 125 |
|
|---|
| 126 | can be entered as
|
|---|
| 127 | (ALIST->POLY '(((2 3) . 3) ((0 1) . 2) ((0 0) . 7))).
|
|---|
| 128 |
|
|---|
| 129 | NOTE: The primary use is for low-level debugging of the package."
|
|---|
| 130 | (dolist (x alist poly)
|
|---|
| 131 | (poly-insert-term poly (make-instance 'term :exponents (car x) :coeff (cdr x)))))
|
|---|
| 132 |
|
|---|
| 133 | (defmethod update-instance-for-different-class :after ((old term) (new poly) &key)
|
|---|
| 134 | "Converts OLD of class TERM to a NEW of class POLY, by making it into a 1-element TERMLIST."
|
|---|
| 135 | (reinitialize-instance new
|
|---|
| 136 | :dimension (monom-dimension old)
|
|---|
| 137 | :termlist (list old)))
|
|---|
| 138 |
|
|---|
| 139 | (defmethod update-instance-for-different-class :after ((old monom) (new poly) &key)
|
|---|
| 140 | "Converts OLD of class MONOM to a NEW of class POLY, by making it into a 1-element TERMLIST."
|
|---|
| 141 | (reinitialize-instance new
|
|---|
| 142 | :dimension (monom-dimension old)
|
|---|
| 143 | :termlist (list (change-class old 'term))))
|
|---|
| 144 |
|
|---|
| 145 | (defmethod universal-equalp ((self poly) (other poly))
|
|---|
| 146 | "Implements equality of polynomials."
|
|---|
| 147 | (and (eql (poly-dimension self) (poly-dimension other))
|
|---|
| 148 | (every #'universal-equalp (poly-termlist self) (poly-termlist other))
|
|---|
| 149 | (eq (poly-term-order self) (poly-term-order other))))
|
|---|
| 150 |
|
|---|
| 151 | (defgeneric leading-term (object)
|
|---|
| 152 | (:method ((self poly))
|
|---|
| 153 | (car (poly-termlist self)))
|
|---|
| 154 | (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
|
|---|
| 155 |
|
|---|
| 156 | (defgeneric second-leading-term (object)
|
|---|
| 157 | (:method ((self poly))
|
|---|
| 158 | (cadar (poly-termlist self)))
|
|---|
| 159 | (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
|
|---|
| 160 |
|
|---|
| 161 | (defgeneric leading-monomial (object)
|
|---|
| 162 | (:method ((self poly))
|
|---|
| 163 | (change-class (copy-instance (leading-term self)) 'monom))
|
|---|
| 164 | (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
|
|---|
| 165 |
|
|---|
| 166 | (defgeneric second-leading-monomial (object)
|
|---|
| 167 | (:method ((self poly))
|
|---|
| 168 | (change-class (copy-instance (second-leading-term self)) 'monom))
|
|---|
| 169 | (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
|
|---|
| 170 |
|
|---|
| 171 | (defgeneric leading-coefficient (object)
|
|---|
| 172 | (:method ((self poly))
|
|---|
| 173 | (term-coeff (leading-term self)))
|
|---|
| 174 | (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
|
|---|
| 175 |
|
|---|
| 176 | (defgeneric second-leading-coefficient (object)
|
|---|
| 177 | (:method ((self poly))
|
|---|
| 178 | (term-coeff (second-leading-term self)))
|
|---|
| 179 | (:documentation "The second leading coefficient of a polynomial. It
|
|---|
| 180 | signals error for a polynomial with at most one term."))
|
|---|
| 181 |
|
|---|
| 182 | (defmethod universal-zerop ((self poly))
|
|---|
| 183 | "Return T iff SELF is a zero polynomial."
|
|---|
| 184 | (null (poly-termlist self)))
|
|---|
| 185 |
|
|---|
| 186 | (defgeneric poly-length (self)
|
|---|
| 187 | (:documentation "Return the number of terms.")
|
|---|
| 188 | (:method ((self poly))
|
|---|
| 189 | (length (poly-termlist self))))
|
|---|
| 190 |
|
|---|
| 191 | (defgeneric scalar-multiply-by (self other)
|
|---|
| 192 | (:documentation "Multiply vector SELF by a scalar OTHER.")
|
|---|
| 193 | (:method ((self poly) other)
|
|---|
| 194 | (mapc #'(lambda (term) (setf (term-coeff term) (multiply (term-coeff term) other)))
|
|---|
| 195 | (poly-termlist self))
|
|---|
| 196 | self))
|
|---|
| 197 |
|
|---|
| 198 | (defgeneric scalar-divide-by (self other)
|
|---|
| 199 | (:documentation "Divide vector SELF by a scalar OTHER.")
|
|---|
| 200 | (:method ((self poly) other)
|
|---|
| 201 | (mapc #'(lambda (term) (setf (term-coeff term) (divide (term-coeff term) other)))
|
|---|
| 202 | (poly-termlist self))
|
|---|
| 203 | self))
|
|---|
| 204 |
|
|---|
| 205 | (defmethod unary-inverse :before ((self poly))
|
|---|
| 206 | (with-slots (termlist)
|
|---|
| 207 | (assert (and (= (length termlist) 1) (zerop (total-degree (car termlist)) 0))
|
|---|
| 208 | nil
|
|---|
| 209 | "To be invertible, the polynomial must have 1 term of total degree 0.")))
|
|---|
| 210 |
|
|---|
| 211 | (defmethod unary-inverse ((self poly))
|
|---|
| 212 | (with-slots (termlist)
|
|---|
| 213 | self
|
|---|
| 214 | (setf (car termlist) (unary-inverse (car termlist)))))
|
|---|
| 215 |
|
|---|
| 216 | (defmethod multiply-by ((self poly) (other monom))
|
|---|
| 217 | "Multiply a polynomial SELF by OTHER."
|
|---|
| 218 | (mapc #'(lambda (term) (multiply-by term other))
|
|---|
| 219 | (poly-termlist self))
|
|---|
| 220 | self)
|
|---|
| 221 |
|
|---|
| 222 | (defmethod multiply-by ((self poly) (other term))
|
|---|
| 223 | "Multiply a polynomial SELF by OTHER."
|
|---|
| 224 | (mapc #'(lambda (term) (multiply-by term other))
|
|---|
| 225 | (poly-termlist self))
|
|---|
| 226 | self)
|
|---|
| 227 |
|
|---|
| 228 | (defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
|
|---|
| 229 | "Return an expression which will efficiently adds/subtracts two
|
|---|
| 230 | polynomials, P and Q. The addition/subtraction of coefficients is
|
|---|
| 231 | performed by calling ADD/SUBTRACT-FN. If UMINUS-FN is supplied, it is
|
|---|
| 232 | used to negate the coefficients of Q which do not have a corresponding
|
|---|
| 233 | coefficient in P. The code implements an efficient algorithm to add
|
|---|
| 234 | two polynomials represented as sorted lists of terms. The code
|
|---|
| 235 | destroys both arguments, reusing the terms to build the result."
|
|---|
| 236 | `(macrolet ((lc (x) `(term-coeff (car ,x))))
|
|---|
| 237 | (do ((p ,p)
|
|---|
| 238 | (q ,q)
|
|---|
| 239 | r)
|
|---|
| 240 | ((or (endp p) (endp q))
|
|---|
| 241 | ;; NOTE: R contains the result in reverse order. Can it
|
|---|
| 242 | ;; be more efficient to produce the terms in correct order?
|
|---|
| 243 | (unless (endp q)
|
|---|
| 244 | ;; Upon subtraction, we must change the sign of
|
|---|
| 245 | ;; all coefficients in q
|
|---|
| 246 | ,@(when uminus-fn
|
|---|
| 247 | `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
|
|---|
| 248 | (setf r (nreconc r q)))
|
|---|
| 249 | (unless (endp p)
|
|---|
| 250 | (setf r (nreconc r p)))
|
|---|
| 251 | r)
|
|---|
| 252 | (multiple-value-bind
|
|---|
| 253 | (greater-p equal-p)
|
|---|
| 254 | (funcall ,order-fn (car p) (car q))
|
|---|
| 255 | (cond
|
|---|
| 256 | (greater-p
|
|---|
| 257 | (rotatef (cdr p) r p)
|
|---|
| 258 | )
|
|---|
| 259 | (equal-p
|
|---|
| 260 | (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
|
|---|
| 261 | (cond
|
|---|
| 262 | ((universal-zerop s)
|
|---|
| 263 | (setf p (cdr p))
|
|---|
| 264 | )
|
|---|
| 265 | (t
|
|---|
| 266 | (setf (lc p) s)
|
|---|
| 267 | (rotatef (cdr p) r p))))
|
|---|
| 268 | (setf q (cdr q))
|
|---|
| 269 | )
|
|---|
| 270 | (t
|
|---|
| 271 | ;;Negate the term of Q if UMINUS provided, signallig
|
|---|
| 272 | ;;that we are doing subtraction
|
|---|
| 273 | ,(when uminus-fn
|
|---|
| 274 | `(setf (lc q) (funcall ,uminus-fn (lc q))))
|
|---|
| 275 | (rotatef (cdr q) r q))))
|
|---|
| 276 | ;;(format t "P:~A~%" p)
|
|---|
| 277 | ;;(format t "Q:~A~%" q)
|
|---|
| 278 | ;;(format t "R:~A~%" r)
|
|---|
| 279 | )))
|
|---|
| 280 |
|
|---|
| 281 |
|
|---|
| 282 |
|
|---|
| 283 | (defgeneric add-to (self other)
|
|---|
| 284 | (:documentation "Add OTHER to SELF.")
|
|---|
| 285 | (:method ((self number) (other number))
|
|---|
| 286 | (+ self other))
|
|---|
| 287 | (:method ((self poly) (other number))
|
|---|
| 288 | (add-to self (make-poly-constant (poly-dimension self) other)))
|
|---|
| 289 | (:method ((self number) (other poly))
|
|---|
| 290 | (add-to (make-poly-constant (poly-dimension other) self) other)))
|
|---|
| 291 |
|
|---|
| 292 |
|
|---|
| 293 | (defgeneric subtract-from (self other)
|
|---|
| 294 | (:documentation "Subtract OTHER from SELF.")
|
|---|
| 295 | (:method ((self number) (other number))
|
|---|
| 296 | (- self other))
|
|---|
| 297 | (:method ((self poly) (other number))
|
|---|
| 298 | (subtract-from self (make-poly-constant (poly-dimension self) other))))
|
|---|
| 299 |
|
|---|
| 300 |
|
|---|
| 301 | #|
|
|---|
| 302 | (defmacro def-add/subtract-method (add/subtract-method-name
|
|---|
| 303 | uminus-method-name
|
|---|
| 304 | &optional
|
|---|
| 305 | (doc-string nil doc-string-supplied-p))
|
|---|
| 306 | "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
|
|---|
| 307 | `(defmethod ,add/subtract-method-name ((self poly) (other poly))
|
|---|
| 308 | ,@(when doc-string-supplied-p `(,doc-string))
|
|---|
| 309 | ;; Ensure orders are compatible
|
|---|
| 310 | (change-term-order other self)
|
|---|
| 311 | (setf (poly-termlist self) (fast-add/subtract
|
|---|
| 312 | (poly-termlist self) (poly-termlist other)
|
|---|
| 313 | (poly-term-order self)
|
|---|
| 314 | #',add/subtract-method-name
|
|---|
| 315 | ,(when uminus-method-name `(function ,uminus-method-name))))
|
|---|
| 316 | self))
|
|---|
| 317 |
|
|---|
| 318 | (eval-when (:load-toplevel :execute)
|
|---|
| 319 |
|
|---|
| 320 | (def-add/subtract-method add-to nil
|
|---|
| 321 | "Adds to polynomial SELF another polynomial OTHER.
|
|---|
| 322 | This operation destructively modifies both polynomials.
|
|---|
| 323 | The result is stored in SELF. This implementation does
|
|---|
| 324 | no consing, entirely reusing the sells of SELF and OTHER.")
|
|---|
| 325 |
|
|---|
| 326 | (def-add/subtract-method subtract-from unary-minus
|
|---|
| 327 | "Subtracts from polynomial SELF another polynomial OTHER.
|
|---|
| 328 | This operation destructively modifies both polynomials.
|
|---|
| 329 | The result is stored in SELF. This implementation does
|
|---|
| 330 | no consing, entirely reusing the sells of SELF and OTHER.")
|
|---|
| 331 | )
|
|---|
| 332 |
|
|---|
| 333 | |#
|
|---|
| 334 |
|
|---|
| 335 | (defmethod unary-minus ((self poly))
|
|---|
| 336 | "Destructively modifies the coefficients of the polynomial SELF,
|
|---|
| 337 | by changing their sign."
|
|---|
| 338 | (mapc #'unary-minus (poly-termlist self))
|
|---|
| 339 | self)
|
|---|
| 340 |
|
|---|
| 341 | (defun add-termlists (p q order-fn)
|
|---|
| 342 | "Destructively adds two termlists P and Q ordered according to ORDER-FN."
|
|---|
| 343 | (fast-add/subtract p q order-fn #'add-to nil))
|
|---|
| 344 |
|
|---|
| 345 | (defun subtract-termlists (p q order-fn)
|
|---|
| 346 | "Destructively subtracts two termlists P and Q ordered according to ORDER-FN."
|
|---|
| 347 | (fast-add/subtract p q order-fn #'subtract-from #'unary-minus))
|
|---|
| 348 |
|
|---|
| 349 | (defmethod add-to ((self poly) (other poly))
|
|---|
| 350 | "Adds to polynomial SELF another polynomial OTHER.
|
|---|
| 351 | This operation destructively modifies both polynomials.
|
|---|
| 352 | The result is stored in SELF. This implementation does
|
|---|
| 353 | no consing, entirely reusing the sells of SELF and OTHER."
|
|---|
| 354 | (change-term-order other self)
|
|---|
| 355 | (setf (poly-termlist self) (add-termlists
|
|---|
| 356 | (poly-termlist self) (poly-termlist other)
|
|---|
| 357 | (poly-term-order self)))
|
|---|
| 358 | self)
|
|---|
| 359 |
|
|---|
| 360 |
|
|---|
| 361 | (defmethod subtract-from ((self poly) (other poly))
|
|---|
| 362 | "Subtracts from polynomial SELF another polynomial OTHER.
|
|---|
| 363 | This operation destructively modifies both polynomials.
|
|---|
| 364 | The result is stored in SELF. This implementation does
|
|---|
| 365 | no consing, entirely reusing the sells of SELF and OTHER."
|
|---|
| 366 | (change-term-order other self)
|
|---|
| 367 | (setf (poly-termlist self) (subtract-termlists
|
|---|
| 368 | (poly-termlist self) (poly-termlist other)
|
|---|
| 369 | (poly-term-order self)))
|
|---|
| 370 | self)
|
|---|
| 371 |
|
|---|
| 372 | (defmacro multiply-term-by-termlist-dropping-zeros (term termlist
|
|---|
| 373 | &optional (reverse-arg-order-P nil))
|
|---|
| 374 | "Multiplies term TERM by a list of term, TERMLIST.
|
|---|
| 375 | Takes into accound divisors of zero in the ring, by
|
|---|
| 376 | deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
|
|---|
| 377 | is T, change the order of arguments; this may be important
|
|---|
| 378 | if we extend the package to non-commutative rings."
|
|---|
| 379 | `(mapcan #'(lambda (other-term)
|
|---|
| 380 | (let ((prod (multiply
|
|---|
| 381 | ,@(cond
|
|---|
| 382 | (reverse-arg-order-p
|
|---|
| 383 | `(other-term ,term))
|
|---|
| 384 | (t
|
|---|
| 385 | `(,term other-term))))))
|
|---|
| 386 | (cond
|
|---|
| 387 | ((universal-zerop prod) nil)
|
|---|
| 388 | (t (list prod)))))
|
|---|
| 389 | ,termlist))
|
|---|
| 390 |
|
|---|
| 391 | (defun multiply-termlists (p q order-fn)
|
|---|
| 392 | "A version of polynomial multiplication, operating
|
|---|
| 393 | directly on termlists."
|
|---|
| 394 | (cond
|
|---|
| 395 | ((or (endp p) (endp q))
|
|---|
| 396 | ;;p or q is 0 (represented by NIL)
|
|---|
| 397 | nil)
|
|---|
| 398 | ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
|
|---|
| 399 | ((endp (cdr p))
|
|---|
| 400 | (multiply-term-by-termlist-dropping-zeros (car p) q))
|
|---|
| 401 | ((endp (cdr q))
|
|---|
| 402 | (multiply-term-by-termlist-dropping-zeros (car q) p t))
|
|---|
| 403 | (t
|
|---|
| 404 | (cons (multiply (car p) (car q))
|
|---|
| 405 | (add-termlists
|
|---|
| 406 | (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
|
|---|
| 407 | (multiply-termlists (cdr p) q order-fn)
|
|---|
| 408 | order-fn)))))
|
|---|
| 409 |
|
|---|
| 410 | (defmethod multiply-by ((self poly) (other poly))
|
|---|
| 411 | (change-term-order other self)
|
|---|
| 412 | (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
|
|---|
| 413 | (poly-termlist other)
|
|---|
| 414 | (poly-term-order self)))
|
|---|
| 415 | self)
|
|---|
| 416 |
|
|---|
| 417 | (defgeneric add-2 (object1 object2)
|
|---|
| 418 | (:documentation "Non-destructively add OBJECT1 to OBJECT2.")
|
|---|
| 419 | (:method ((object1 t) (object2 t))
|
|---|
| 420 | (add-to (copy-instance object1) (copy-instance object2))))
|
|---|
| 421 |
|
|---|
| 422 | (defun add (&rest summands)
|
|---|
| 423 | "Non-destructively adds list SUMMANDS."
|
|---|
| 424 | (cond ((endp summands) 0)
|
|---|
| 425 | (t (reduce #'add-2 summands))))
|
|---|
| 426 |
|
|---|
| 427 | (defun subtract (minuend &rest subtrahends)
|
|---|
| 428 | "Non-destructively subtract MINUEND and SUBTRAHENDS."
|
|---|
| 429 | (cond ((endp subtrahends) (unary-minus minuend))
|
|---|
| 430 | (t (subtract-from (copy-instance minuend) (reduce #'add subtrahends)))))
|
|---|
| 431 |
|
|---|
| 432 | (defmethod left-tensor-product-by ((self poly) (other monom))
|
|---|
| 433 | (setf (poly-termlist self)
|
|---|
| 434 | (mapcan #'(lambda (term)
|
|---|
| 435 | (let ((prod (left-tensor-product-by term other)))
|
|---|
| 436 | (cond
|
|---|
| 437 | ((universal-zerop prod) nil)
|
|---|
| 438 | (t (list prod)))))
|
|---|
| 439 | (poly-termlist self)))
|
|---|
| 440 | (incf (poly-dimension self) (monom-dimension other))
|
|---|
| 441 | self)
|
|---|
| 442 |
|
|---|
| 443 | (defmethod right-tensor-product-by ((self poly) (other monom))
|
|---|
| 444 | (setf (poly-termlist self)
|
|---|
| 445 | (mapcan #'(lambda (term)
|
|---|
| 446 | (let ((prod (right-tensor-product-by term other)))
|
|---|
| 447 | (cond
|
|---|
| 448 | ((universal-zerop prod) nil)
|
|---|
| 449 | (t (list prod)))))
|
|---|
| 450 | (poly-termlist self)))
|
|---|
| 451 | (incf (poly-dimension self) (monom-dimension other))
|
|---|
| 452 | self)
|
|---|
| 453 |
|
|---|
| 454 |
|
|---|
| 455 | (defun standard-extension (plist &aux (k (length plist)) (i 0))
|
|---|
| 456 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
|
|---|
| 457 | is a list of polynomials. Destructively modifies PLIST elements."
|
|---|
| 458 | (mapc #'(lambda (poly)
|
|---|
| 459 | (left-tensor-product-by
|
|---|
| 460 | poly
|
|---|
| 461 | (prog1
|
|---|
| 462 | (make-monom-variable k i)
|
|---|
| 463 | (incf i))))
|
|---|
| 464 | plist))
|
|---|
| 465 |
|
|---|
| 466 | (defun standard-extension-1 (plist
|
|---|
| 467 | &aux
|
|---|
| 468 | (plist (standard-extension plist))
|
|---|
| 469 | (nvars (poly-dimension (car plist))))
|
|---|
| 470 | "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
|
|---|
| 471 | Firstly, new K variables U1, U2, ..., UK, are inserted into each
|
|---|
| 472 | polynomial. Subsequently, P1, P2, ..., PK are destructively modified
|
|---|
| 473 | tantamount to replacing PI with UI*PI-1. It assumes that all
|
|---|
| 474 | polynomials have the same dimension, and only the first polynomial
|
|---|
| 475 | is examined to determine this dimension."
|
|---|
| 476 | ;; Implementation note: we use STANDARD-EXTENSION and then subtract
|
|---|
| 477 | ;; 1 from each polynomial; since UI*PI has no constant term,
|
|---|
| 478 | ;; we just need to append the constant term at the end
|
|---|
| 479 | ;; of each termlist.
|
|---|
| 480 | (flet ((subtract-1 (p)
|
|---|
| 481 | (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
|
|---|
| 482 | (setf plist (mapc #'subtract-1 plist)))
|
|---|
| 483 | plist)
|
|---|
| 484 |
|
|---|
| 485 |
|
|---|
| 486 | (defun standard-sum (plist
|
|---|
| 487 | &aux
|
|---|
| 488 | (plist (standard-extension plist))
|
|---|
| 489 | (nvars (poly-dimension (car plist))))
|
|---|
| 490 | "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
|
|---|
| 491 | Firstly, new K variables, U1, U2, ..., UK, are inserted into each
|
|---|
| 492 | polynomial. Subsequently, P1, P2, ..., PK are destructively modified
|
|---|
| 493 | tantamount to replacing PI with UI*PI, and the resulting polynomials
|
|---|
| 494 | are added. Finally, 1 is subtracted. It should be noted that the term
|
|---|
| 495 | order is not modified, which is equivalent to using a lexicographic
|
|---|
| 496 | order on the first K variables."
|
|---|
| 497 | (flet ((subtract-1 (p)
|
|---|
| 498 | (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
|
|---|
| 499 | (subtract-1
|
|---|
| 500 | (make-instance
|
|---|
| 501 | 'poly
|
|---|
| 502 | :termlist (apply #'nconc (mapcar #'poly-termlist plist))))))
|
|---|
| 503 |
|
|---|
| 504 | (defgeneric universal-ezgcd (x y)
|
|---|
| 505 | (:documentation "Solves the diophantine system: X=C*X1, Y=C*X2,
|
|---|
| 506 | C=GCD(X,Y). It returns C, X1 and Y1. The result may be obtained by
|
|---|
| 507 | the Euclidean algorithm.")
|
|---|
| 508 | (:method ((x integer) (y integer)
|
|---|
| 509 | &aux (c (gcd x y)))
|
|---|
| 510 | (values c (/ x c) (/ y c)))
|
|---|
| 511 | )
|
|---|
| 512 |
|
|---|
| 513 | (defgeneric s-polynomial (object1 object2)
|
|---|
| 514 | (:documentation "Yields the S-polynomial of OBJECT1 and OBJECT2.")
|
|---|
| 515 | (:method ((f poly) (g poly))
|
|---|
| 516 | (let* ((lcm (universal-lcm (leading-monomial f) (leading-monomial g)))
|
|---|
| 517 | (mf (divide lcm (leading-monomial f)))
|
|---|
| 518 | (mg (divide lcm (leading-monomial g))))
|
|---|
| 519 | (multiple-value-bind (c cf cg)
|
|---|
| 520 | (universal-ezgcd (leading-coefficient f) (leading-coefficient g))
|
|---|
| 521 | (declare (ignore c))
|
|---|
| 522 | (subtract
|
|---|
| 523 | (multiply f (change-class mf 'term :coeff cg))
|
|---|
| 524 | (multiply g (change-class mg 'term :coeff cf)))))))
|
|---|
| 525 |
|
|---|
| 526 | (defgeneric poly-content (object)
|
|---|
| 527 | (:documentation "Greatest common divisor of the coefficients of the polynomial object OBJECT.")
|
|---|
| 528 | (:method ((self poly))
|
|---|
| 529 | (reduce #'universal-gcd
|
|---|
| 530 | (mapcar #'term-coeff (rest (poly-termlist self)))
|
|---|
| 531 | :initial-value (leading-coefficient self))))
|
|---|
| 532 |
|
|---|
| 533 | (defun poly-primitive-part (object)
|
|---|
| 534 | "Divide polynomial OBJECT by gcd of its
|
|---|
| 535 | coefficients. Return the resulting polynomial."
|
|---|
| 536 | (scalar-divide-by object (poly-content object)))
|
|---|
| 537 |
|
|---|
| 538 | (defun poly-insert-variables (self k)
|
|---|
| 539 | (left-tensor-product-by self (make-instance 'monom :dimension k)))
|
|---|
| 540 |
|
|---|
| 541 | (defun saturation-extension (f plist &aux (k (length plist)))
|
|---|
| 542 | "Calculate [F', U1*P1-1,U2*P2-1,...,UK*PK-1], where
|
|---|
| 543 | PLIST=[P1,P2,...,PK] and F' is F with variables U1,U2,...,UK inserted
|
|---|
| 544 | as first K variables. It destructively modifies F and PLIST."
|
|---|
| 545 | (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
|
|---|
| 546 | (standard-extension-1 plist)))
|
|---|
| 547 |
|
|---|
| 548 | (defun polysaturation-extension (f plist &aux (k (length plist)))
|
|---|
| 549 | "Calculate [F', U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]
|
|---|
| 550 | and F' is F with variables U1,U2,...,UK inserted as first K
|
|---|
| 551 | variables. It destructively modifies F and PLIST."
|
|---|
| 552 | (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
|
|---|
| 553 | (list (standard-sum plist))))
|
|---|
| 554 |
|
|---|
| 555 | (defun saturation-extension-1 (f p)
|
|---|
| 556 | "Given family of polynomials F and a polynomial P, calculate [F',
|
|---|
| 557 | U*P-1], where F' is F with variable inserted as the first variable. It
|
|---|
| 558 | destructively modifies F and P."
|
|---|
| 559 | (polysaturation-extension f (list p)))
|
|---|
| 560 |
|
|---|
| 561 | (defmethod multiply-by ((object1 number) (object2 poly))
|
|---|
| 562 | (scalar-multiply-by (copy-instance object2) object1))
|
|---|
| 563 |
|
|---|
| 564 | (defun make-poly-variable (nvars pos &optional (power 1))
|
|---|
| 565 | (change-class (make-monom-variable nvars pos power) 'poly))
|
|---|
| 566 |
|
|---|
| 567 | (defun make-poly-constant (nvars coeff)
|
|---|
| 568 | (change-class (make-term-constant nvars coeff) 'poly))
|
|---|
| 569 |
|
|---|
| 570 | (defgeneric universal-expt (x y)
|
|---|
| 571 | (:documentation "Raises X to power Y.")
|
|---|
| 572 | (:method ((x number) (y integer)) (expt x y))
|
|---|
| 573 | (:method ((x t) (y integer))
|
|---|
| 574 | (declare (type fixnum y))
|
|---|
| 575 | (cond
|
|---|
| 576 | ((minusp y) (error "universal-expt: Negative exponent."))
|
|---|
| 577 | ((universal-zerop x) (if (zerop y) 1))
|
|---|
| 578 | (t
|
|---|
| 579 | (do ((k 1 (ash k 1))
|
|---|
| 580 | (q x (multiply q q)) ;keep squaring
|
|---|
| 581 | (p 1 (if (not (zerop (logand k y))) (multiply p q) p)))
|
|---|
| 582 | ((> k y) p)
|
|---|
| 583 | (declare (fixnum k)))))))
|
|---|
| 584 |
|
|---|
| 585 | (defgeneric poly-p (object)
|
|---|
| 586 | (:documentation "Checks if an object is a polynomial.")
|
|---|
| 587 | (:method ((self poly)) t)
|
|---|
| 588 | (:method ((self t)) nil))
|
|---|
| 589 |
|
|---|
| 590 | (defmethod ->sexp :before ((self poly) &optional vars)
|
|---|
| 591 | "Ensures that the number of variables in VARS maches the polynomial dimension of the
|
|---|
| 592 | polynomial SELF."
|
|---|
| 593 | (with-slots (dimension)
|
|---|
| 594 | self
|
|---|
| 595 | (assert (= (length vars) dimension)
|
|---|
| 596 | nil
|
|---|
| 597 | "Number of variables ~S does not match the dimension ~S"
|
|---|
| 598 | vars dimension)))
|
|---|
| 599 |
|
|---|
| 600 | (defmethod ->sexp ((self poly) &optional vars)
|
|---|
| 601 | "Converts a polynomial SELF to a sexp."
|
|---|
| 602 | (cons '+ (mapcar #'(lambda (x) (->sexp x vars))
|
|---|
| 603 | (poly-termlist self))))
|
|---|
| 604 |
|
|---|
| 605 | (defparameter +list-marker+ :[
|
|---|
| 606 | "A sexp with this head is considered a list of polynomials.")
|
|---|
| 607 |
|
|---|
| 608 | (defmethod ->sexp ((self cons) &optional vars)
|
|---|
| 609 | (assert (eql (car self) +list-marker+))
|
|---|
| 610 | (cons +list-marker+ (mapcar #'(lambda (p) (->sexp p vars)) (cdr self))))
|
|---|
| 611 |
|
|---|
| 612 |
|
|---|
| 613 | (defun poly-eval (expr vars order)
|
|---|
| 614 | "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
|
|---|
| 615 | variables VARS. Return the resulting polynomial or list of
|
|---|
| 616 | polynomials. Standard arithmetical operators in form EXPR are
|
|---|
| 617 | replaced with their analogues in the ring of polynomials, and the
|
|---|
| 618 | resulting expression is evaluated, resulting in a polynomial or a list
|
|---|
| 619 | of polynomials in internal form. A similar operation in another computer
|
|---|
| 620 | algebra system could be called 'expand' or so."
|
|---|
| 621 | (labels ((p-eval (p) (poly-eval p vars order))
|
|---|
| 622 | (p-eval-list (plist) (mapcar #'p-eval plist)))
|
|---|
| 623 | (cond
|
|---|
| 624 | ((eq expr 0)
|
|---|
| 625 | (make-instance 'poly :dimension (length vars)))
|
|---|
| 626 | ((member expr vars :test #'equalp)
|
|---|
| 627 | (let ((pos (position expr vars :test #'equalp)))
|
|---|
| 628 | (make-poly-variable (length vars) pos)))
|
|---|
| 629 | ((atom expr)
|
|---|
| 630 | (make-poly-constant (length vars) expr))
|
|---|
| 631 | ((eq (car expr) +list-marker+)
|
|---|
| 632 | (cons +list-marker+ (p-eval-list (cdr expr))))
|
|---|
| 633 | (t
|
|---|
| 634 | (case (car expr)
|
|---|
| 635 | (+ (reduce #'add (p-eval-list (cdr expr))))
|
|---|
| 636 | (- (apply #'subtract (p-eval-list (cdr expr))))
|
|---|
| 637 | (*
|
|---|
| 638 | (if (endp (cddr expr)) ;unary
|
|---|
| 639 | (p-eval (cadr expr))
|
|---|
| 640 | (reduce #'multiply (p-eval-list (cdr expr)))))
|
|---|
| 641 | (/
|
|---|
| 642 | ;; A polynomial can be divided by a scalar
|
|---|
| 643 | (cond
|
|---|
| 644 | ((endp (cddr expr))
|
|---|
| 645 | ;; A special case (/ ?), the inverse
|
|---|
| 646 | (divide (cadr expr)))
|
|---|
| 647 | (t
|
|---|
| 648 | (let ((num (p-eval (cadr expr)))
|
|---|
| 649 | (denom-inverse (apply #'divide (mapcar #'p-eval (cddr expr)))))
|
|---|
| 650 | (multiply denom-inverse num)))))
|
|---|
| 651 | (expt
|
|---|
| 652 | (cond
|
|---|
| 653 | ((member (cadr expr) vars :test #'equalp)
|
|---|
| 654 | ;;Special handling of (expt var pow)
|
|---|
| 655 | (let ((pos (position (cadr expr) vars :test #'equalp)))
|
|---|
| 656 | (make-poly-variable (length vars) pos (caddr expr))))
|
|---|
| 657 | ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
|
|---|
| 658 | ;; Negative power means division in coefficient ring
|
|---|
| 659 | ;; Non-integer power means non-polynomial coefficient
|
|---|
| 660 | expr)
|
|---|
| 661 | (t (universal-expt (p-eval (cadr expr)) (caddr expr)))))
|
|---|
| 662 | (otherwise
|
|---|
| 663 | (error "Cannot evaluate as polynomial: ~A" expr)))))))
|
|---|