close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2926

Last change on this file since 2926 was 2926, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 18.0 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
27 (:documentation "Implements polynomials"))
28
29(in-package :polynomial)
30
31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
32
33(defclass poly ()
34 ((termlist :initarg :termlist :accessor poly-termlist
35 :documentation "List of terms.")
36 (order :initarg :order :accessor poly-term-order
37 :documentation "Monomial/term order."))
38 (:default-initargs :termlist nil :order #'lex>)
39 (:documentation "A polynomial with a list of terms TERMLIST, ordered
40according to term order ORDER, which defaults to LEX>."))
41
42(defmethod print-object ((self poly) stream)
43 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
44 (poly-termlist self)
45 (poly-term-order self)))
46
47(defmethod r-equalp ((self poly) (other poly))
48 "POLY instances are R-EQUALP if they have the same
49order and if all terms are R-EQUALP."
50 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
51 (eq (poly-term-order self) (poly-term-order other))))
52
53(defmethod insert-item ((self poly) (item term))
54 (push item (poly-termlist self))
55 self)
56
57(defmethod append-item ((self poly) (item term))
58 (setf (cdr (last (poly-termlist self))) (list item))
59 self)
60
61;; Leading term
62(defgeneric leading-term (object)
63 (:method ((self poly))
64 (car (poly-termlist self)))
65 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
66
67;; Second term
68(defgeneric second-leading-term (object)
69 (:method ((self poly))
70 (cadar (poly-termlist self)))
71 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
72
73;; Leading coefficient
74(defgeneric leading-coefficient (object)
75 (:method ((self poly))
76 (r-coeff (leading-term self)))
77 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
78
79;; Second coefficient
80(defgeneric second-leading-coefficient (object)
81 (:method ((self poly))
82 (r-coeff (second-leading-term self)))
83 (:documentation "The second leading coefficient of a polynomial. It
84 signals error for a polynomial with at most one term."))
85
86;; Testing for a zero polynomial
87(defmethod r-zerop ((self poly))
88 (null (poly-termlist self)))
89
90;; The number of terms
91(defmethod r-length ((self poly))
92 (length (poly-termlist self)))
93
94(defmethod multiply-by ((self poly) (other monom))
95 (mapc #'(lambda (term) (multiply-by term other))
96 (poly-termlist self))
97 self)
98
99(defmethod multiply-by ((self poly) (other scalar))
100 (mapc #'(lambda (term) (multiply-by term other))
101 (poly-termlist self))
102 self)
103
104
105(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
106 "Return an expression which will efficiently adds/subtracts two
107polynomials, P and Q. The addition/subtraction of coefficients is
108performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
109is supplied, it is used to negate the coefficients of Q which do not
110have a corresponding coefficient in P. The code implements an
111efficient algorithm to add two polynomials represented as sorted lists
112of terms. The code destroys both arguments, reusing the terms to build
113the result."
114 `(macrolet ((lc (x) `(r-coeff (car ,x))))
115 (do ((p ,p)
116 (q ,q)
117 r)
118 ((or (endp p) (endp q))
119 ;; NOTE: R contains the result in reverse order. Can it
120 ;; be more efficient to produce the terms in correct order?
121 (unless (endp q)
122 ;; Upon subtraction, we must change the sign of
123 ;; all coefficients in q
124 ,@(when uminus-fn
125 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
126 (setf r (nreconc r q)))
127 r)
128 (multiple-value-bind
129 (greater-p equal-p)
130 (funcall ,order-fn (car p) (car q))
131 (cond
132 (greater-p
133 (rotatef (cdr p) r p)
134 )
135 (equal-p
136 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
137 (cond
138 ((r-zerop s)
139 (setf p (cdr p))
140 )
141 (t
142 (setf (lc p) s)
143 (rotatef (cdr p) r p))))
144 (setf q (cdr q))
145 )
146 (t
147 ;;Negate the term of Q if UMINUS provided, signallig
148 ;;that we are doing subtraction
149 ,(when uminus-fn
150 `(setf (lc q) (funcall ,uminus-fn (lc q))))
151 (rotatef (cdr q) r q)))))))
152
153
154(defmacro def-add/subtract-method (add/subtract-method-name
155 uminus-method-name
156 &optional
157 (doc-string nil doc-string-supplied-p))
158 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
159 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
160 ,@(when doc-string-supplied-p `(,doc-string))
161 ;; Ensure orders are compatible
162 (unless (eq (poly-term-order self) (poly-term-order other))
163 (setf (poly-termlist other) (sort (poly-termlist other) (poly-term-order self))
164 (poly-term-order other) (poly-term-order self)))
165 (setf (poly-termlist self) (fast-add/subtract
166 (poly-termlist self) (poly-termlist other)
167 (poly-term-order self)
168 #',add/subtract-method-name
169 ,(when uminus-method-name `(function ,uminus-method-name))))
170 self))
171
172(eval-when (:compile-toplevel :load-toplevel :execute)
173
174 (def-add/subtract-method add-to nil
175 "Adds to polynomial SELF another polynomial OTHER.
176This operation destructively modifies both polynomials.
177The result is stored in SELF. This implementation does
178no consing, entirely reusing the sells of SELF and OTHER.")
179
180 (def-add/subtract-method subtract-from unary-minus
181 "Subtracts from polynomial SELF another polynomial OTHER.
182This operation destructively modifies both polynomials.
183The result is stored in SELF. This implementation does
184no consing, entirely reusing the sells of SELF and OTHER.")
185
186 )
187
188
189
190(defmethod unary-minus ((self poly))
191 "Destructively modifies the coefficients of the polynomial SELF,
192by changing their sign."
193 (mapc #'unary-minus (poly-termlist self))
194 self)
195
196(defun add-termlists (p q order-fn)
197 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
198 (fast-add/subtract p q order-fn #'add-to nil))
199
200(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
201 &optional (reverse-arg-order nil))
202 "Multiplies term TERM by a list of term, TERMLIST.
203Takes into accound divisors of zero in the ring, by
204deleting zero terms."
205 `(mapcan #'(lambda (other-term)
206 (let ((prod (r*
207 ,@(cond
208 (reverse-arg-order
209 `(other-term ,term))
210 (t
211 `(,term other-term))))))
212 (cond
213 ((r-zerop prod) nil)
214 (t (list prod)))))
215 ,termlist))
216
217(defun multiply-termlists (p q order-fn)
218 (cond
219 ((or (endp p) (endp q))
220 ;;p or q is 0 (represented by NIL)
221 nil)
222 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
223 ((endp (cdr p))
224 (multiply-term-by-termlist-dropping-zeros (car p) q))
225 ((endp (cdr q))
226 (multiply-term-by-termlist-dropping-zeros (car q) p t))
227 (t
228 (nconc (r* (car p) (car q))
229 (add-termlists
230 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
231 (multiply-termlists (cdr p) q order-fn)
232 order-fn)))))
233#|
234
235
236
237(defmethod multiply-by ((self poly) (other poly))
238 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
239 (poly-termlist other)
240 (poly-term-order self)))
241 self)
242
243|#
244
245#|
246
247
248(defun poly-standard-extension (plist &aux (k (length plist)))
249 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
250is a list of polynomials."
251 (declare (list plist) (fixnum k))
252 (labels ((incf-power (g i)
253 (dolist (x (poly-termlist g))
254 (incf (monom-elt (term-monom x) i)))
255 (incf (poly-sugar g))))
256 (setf plist (poly-list-add-variables plist k))
257 (dotimes (i k plist)
258 (incf-power (nth i plist) i))))
259
260
261
262(defun saturation-extension (ring f plist
263 &aux
264 (k (length plist))
265 (d (monom-dimension (poly-lm (car plist))))
266 f-x plist-x)
267 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
268 (declare (type ring ring))
269 (setf f-x (poly-list-add-variables f k)
270 plist-x (mapcar #'(lambda (x)
271 (setf (poly-termlist x)
272 (nconc (poly-termlist x)
273 (list (make-term :monom (make-monom :dimension d)
274 :coeff (funcall (ring-uminus ring)
275 (funcall (ring-unit ring)))))))
276 x)
277 (poly-standard-extension plist)))
278 (append f-x plist-x))
279
280
281(defun polysaturation-extension (ring f plist
282 &aux
283 (k (length plist))
284 (d (+ k (monom-dimension (poly-lm (car plist)))))
285 ;; Add k variables to f
286 (f (poly-list-add-variables f k))
287 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
288 (plist (apply #'poly-append (poly-standard-extension plist))))
289 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
290 ;; Add -1 as the last term
291 (declare (type ring ring))
292 (setf (cdr (last (poly-termlist plist)))
293 (list (make-term :monom (make-monom :dimension d)
294 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
295 (append f (list plist)))
296
297(defun saturation-extension-1 (ring f p)
298 "Calculate [F, U*P-1]. It destructively modifies F."
299 (declare (type ring ring))
300 (polysaturation-extension ring f (list p)))
301
302;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
303;;
304;; Evaluation of polynomial (prefix) expressions
305;;
306;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
307
308(defun coerce-coeff (ring expr vars)
309 "Coerce an element of the coefficient ring to a constant polynomial."
310 ;; Modular arithmetic handler by rat
311 (declare (type ring ring))
312 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
313 :coeff (funcall (ring-parse ring) expr)))
314 0))
315
316(defun poly-eval (expr vars
317 &optional
318 (ring +ring-of-integers+)
319 (order #'lex>)
320 (list-marker :[)
321 &aux
322 (ring-and-order (make-ring-and-order :ring ring :order order)))
323 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
324variables VARS. Return the resulting polynomial or list of
325polynomials. Standard arithmetical operators in form EXPR are
326replaced with their analogues in the ring of polynomials, and the
327resulting expression is evaluated, resulting in a polynomial or a list
328of polynomials in internal form. A similar operation in another computer
329algebra system could be called 'expand' or so."
330 (declare (type ring ring))
331 (labels ((p-eval (arg) (poly-eval arg vars ring order))
332 (p-eval-scalar (arg) (poly-eval-scalar arg))
333 (p-eval-list (args) (mapcar #'p-eval args))
334 (p-add (x y) (poly-add ring-and-order x y)))
335 (cond
336 ((null expr) (error "Empty expression"))
337 ((eql expr 0) (make-poly-zero))
338 ((member expr vars :test #'equalp)
339 (let ((pos (position expr vars :test #'equalp)))
340 (make-poly-variable ring (length vars) pos)))
341 ((atom expr)
342 (coerce-coeff ring expr vars))
343 ((eq (car expr) list-marker)
344 (cons list-marker (p-eval-list (cdr expr))))
345 (t
346 (case (car expr)
347 (+ (reduce #'p-add (p-eval-list (cdr expr))))
348 (- (case (length expr)
349 (1 (make-poly-zero))
350 (2 (poly-uminus ring (p-eval (cadr expr))))
351 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
352 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
353 (reduce #'p-add (p-eval-list (cddr expr)))))))
354 (*
355 (if (endp (cddr expr)) ;unary
356 (p-eval (cdr expr))
357 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
358 (/
359 ;; A polynomial can be divided by a scalar
360 (cond
361 ((endp (cddr expr))
362 ;; A special case (/ ?), the inverse
363 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
364 (t
365 (let ((num (p-eval (cadr expr)))
366 (denom-inverse (apply (ring-div ring)
367 (cons (funcall (ring-unit ring))
368 (mapcar #'p-eval-scalar (cddr expr))))))
369 (scalar-times-poly ring denom-inverse num)))))
370 (expt
371 (cond
372 ((member (cadr expr) vars :test #'equalp)
373 ;;Special handling of (expt var pow)
374 (let ((pos (position (cadr expr) vars :test #'equalp)))
375 (make-poly-variable ring (length vars) pos (caddr expr))))
376 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
377 ;; Negative power means division in coefficient ring
378 ;; Non-integer power means non-polynomial coefficient
379 (coerce-coeff ring expr vars))
380 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
381 (otherwise
382 (coerce-coeff ring expr vars)))))))
383
384(defun poly-eval-scalar (expr
385 &optional
386 (ring +ring-of-integers+)
387 &aux
388 (order #'lex>))
389 "Evaluate a scalar expression EXPR in ring RING."
390 (declare (type ring ring))
391 (poly-lc (poly-eval expr nil ring order)))
392
393(defun spoly (ring-and-order f g
394 &aux
395 (ring (ro-ring ring-and-order)))
396 "It yields the S-polynomial of polynomials F and G."
397 (declare (type ring-and-order ring-and-order) (type poly f g))
398 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
399 (mf (monom-div lcm (poly-lm f)))
400 (mg (monom-div lcm (poly-lm g))))
401 (declare (type monom mf mg))
402 (multiple-value-bind (c cf cg)
403 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
404 (declare (ignore c))
405 (poly-sub
406 ring-and-order
407 (scalar-times-poly ring cg (monom-times-poly mf f))
408 (scalar-times-poly ring cf (monom-times-poly mg g))))))
409
410
411(defun poly-primitive-part (ring p)
412 "Divide polynomial P with integer coefficients by gcd of its
413coefficients and return the result."
414 (declare (type ring ring) (type poly p))
415 (if (poly-zerop p)
416 (values p 1)
417 (let ((c (poly-content ring p)))
418 (values (make-poly-from-termlist
419 (mapcar
420 #'(lambda (x)
421 (make-term :monom (term-monom x)
422 :coeff (funcall (ring-div ring) (term-coeff x) c)))
423 (poly-termlist p))
424 (poly-sugar p))
425 c))))
426
427(defun poly-content (ring p)
428 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
429to compute the greatest common divisor."
430 (declare (type ring ring) (type poly p))
431 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
432
433(defun read-infix-form (&key (stream t))
434 "Parser of infix expressions with integer/rational coefficients
435The parser will recognize two kinds of polynomial expressions:
436
437- polynomials in fully expanded forms with coefficients
438 written in front of symbolic expressions; constants can be optionally
439 enclosed in (); for example, the infix form
440 X^2-Y^2+(-4/3)*U^2*W^3-5
441 parses to
442 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
443
444- lists of polynomials; for example
445 [X-Y, X^2+3*Z]
446 parses to
447 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
448 where the first symbol [ marks a list of polynomials.
449
450-other infix expressions, for example
451 [(X-Y)*(X+Y)/Z,(X+1)^2]
452parses to:
453 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
454Currently this function is implemented using M. Kantrowitz's INFIX package."
455 (read-from-string
456 (concatenate 'string
457 "#I("
458 (with-output-to-string (s)
459 (loop
460 (multiple-value-bind (line eof)
461 (read-line stream t)
462 (format s "~A" line)
463 (when eof (return)))))
464 ")")))
465
466(defun read-poly (vars &key
467 (stream t)
468 (ring +ring-of-integers+)
469 (order #'lex>))
470 "Reads an expression in prefix form from a stream STREAM.
471The expression read from the strem should represent a polynomial or a
472list of polynomials in variables VARS, over the ring RING. The
473polynomial or list of polynomials is returned, with terms in each
474polynomial ordered according to monomial order ORDER."
475 (poly-eval (read-infix-form :stream stream) vars ring order))
476
477(defun string->poly (str vars
478 &optional
479 (ring +ring-of-integers+)
480 (order #'lex>))
481 "Converts a string STR to a polynomial in variables VARS."
482 (with-input-from-string (s str)
483 (read-poly vars :stream s :ring ring :order order)))
484
485(defun poly->alist (p)
486 "Convert a polynomial P to an association list. Thus, the format of the
487returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
488MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
489corresponding coefficient in the ring."
490 (cond
491 ((poly-p p)
492 (mapcar #'term->cons (poly-termlist p)))
493 ((and (consp p) (eq (car p) :[))
494 (cons :[ (mapcar #'poly->alist (cdr p))))))
495
496(defun string->alist (str vars
497 &optional
498 (ring +ring-of-integers+)
499 (order #'lex>))
500 "Convert a string STR representing a polynomial or polynomial list to
501an association list (... (MONOM . COEFF) ...)."
502 (poly->alist (string->poly str vars ring order)))
503
504(defun poly-equal-no-sugar-p (p q)
505 "Compare polynomials for equality, ignoring sugar."
506 (declare (type poly p q))
507 (equalp (poly-termlist p) (poly-termlist q)))
508
509(defun poly-set-equal-no-sugar-p (p q)
510 "Compare polynomial sets P and Q for equality, ignoring sugar."
511 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
512
513(defun poly-list-equal-no-sugar-p (p q)
514 "Compare polynomial lists P and Q for equality, ignoring sugar."
515 (every #'poly-equal-no-sugar-p p q))
516|#
Note: See TracBrowser for help on using the repository browser.