close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2790

Last change on this file since 2790 was 2790, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 17.9 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
27 (:documentation "Implements polynomials"))
28
29(in-package :polynomial)
30
31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
32
33(defclass poly ()
34 ((termlist :initarg :termlist :accessor poly-termlist
35 :documentation "List of terms.")
36 (order :initarg :order :accessor poly-term-order
37 :documentation "Monomial/term order."))
38 (:default-initargs :termlist nil :order #'lex>)
39 (:documentation "A polynomial with a list of terms TERMLIST, ordered
40according to term order ORDER, which defaults to LEX>."))
41
42(defmethod print-object ((self poly) stream)
43 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
44 (poly-termlist self)
45 (poly-term-order self)))
46
47(defmethod r-equalp ((self poly) (other poly))
48 "POLY instances are R-EQUALP if they have the same
49order and if all terms are R-EQUALP."
50 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
51 (eq (poly-term-order self) (poly-term-order other))))
52
53(defmethod insert-item ((self poly) (item term))
54 (push item (poly-termlist self))
55 self)
56
57(defmethod append-item ((self poly) (item term))
58 (setf (cdr (last (poly-termlist self))) (list item))
59 self)
60
61;; Leading term
62(defgeneric leading-term (object)
63 (:method ((self poly))
64 (car (poly-termlist self)))
65 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
66
67;; Second term
68(defgeneric second-leading-term (object)
69 (:method ((self poly))
70 (cadar (poly-termlist self)))
71 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
72
73;; Leading coefficient
74(defgeneric leading-coefficient (object)
75 (:method ((self poly))
76 (r-coeff (leading-term self)))
77 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
78
79;; Second coefficient
80(defgeneric second-leading-coefficient (object)
81 (:method ((self poly))
82 (r-coeff (second-leading-term self)))
83 (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
84
85;; Testing for a zero polynomial
86(defmethod r-zerop ((self poly))
87 (null (poly-termlist self)))
88
89;; The number of terms
90(defmethod r-length ((self poly))
91 (length (poly-termlist self)))
92
93(defmethod multiply-by ((self poly) (other monom))
94 (mapc #'(lambda (term) (multiply-by term other))
95 (poly-termlist self))
96 self)
97
98(defmethod multiply-by ((self poly) (other scalar))
99 (mapc #'(lambda (term) (multiply-by term other))
100 (poly-termlist self))
101 self)
102
103
104(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
105 "Return an expression which will efficiently adds/subtracts two
106polynomials, P and Q. The addition/subtraction of coefficients is
107performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
108is supplied, it is used to negate the coefficients of Q which do not
109have a corresponding coefficient in P. The code implements an
110efficient algorithm to add two polynomials represented as sorted lists
111of terms. The code destroys both arguments, reusing the terms to build
112the result."
113 `(macrolet ((lc (x) `(r-coeff (car ,x))))
114 (do ((p ,p)
115 (q ,q)
116 r)
117 ((or (endp p) (endp q))
118 ;; NOTE: R contains the result in reverse order. Can it
119 ;; be more efficient to produce the terms in correct order?
120 (unless (endp q)
121 ;; Upon subtraction, we must change the sign of
122 ;; all coefficients in q
123 ,@(when uminus-fn
124 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
125 (setf r (nreconc r q)))
126 r)
127 (multiple-value-bind
128 (greater-p equal-p)
129 (funcall ,order-fn (car p) (car q))
130 (cond
131 (greater-p
132 (rotatef (cdr p) r p)
133 )
134 (equal-p
135 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
136 (cond
137 ((r-zerop s)
138 (setf p (cdr p))
139 )
140 (t
141 (setf (lc p) s)
142 (rotatef (cdr p) r p))))
143 (setf q (cdr q))
144 )
145 (t
146 ;;Negate the term of Q if UMINUS provided, signallig
147 ;;that we are doing subtraction
148 ,@(when uminus-fn
149 `((setf (lc q) (funcall ,uminus-fn (lc q)))))
150 (rotatef (cdr q) r q)))))))
151
152
153(defmacro def-add/subtract-method (add/subtract-method-name
154 uminus-method-name
155 &optional
156 (doc-string nil doc-string-supplied-p))
157 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
158 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
159 ,@(when doc-string-supplied-p `(,doc-string))
160 ;; Ensure orders are compatible
161 (unless (eq (poly-term-order self) (poly-term-order other))
162 (setf (poly-termlist other) (sort (poly-termlist other) (poly-term-order self))
163 (poly-term-order other) (poly-term-order self)))
164 (setf (poly-termlist self) (fast-add/subtract
165 (poly-termlist self) (poly-termlist other)
166 (poly-term-order self)
167 #',add/subtract-method-name
168 ,(when uminus-method-name `(function ,uminus-method-name))))
169 self))
170
171(eval-when (:compile-toplevel :load-toplevel :execute)
172
173 (def-add/subtract-method add-to nil
174 "Adds to polynomial SELF another polynomial OTHER.
175This operation destructively modifies both polynomials.
176The result is stored in SELF. This implementation does
177no consing, entirely reusing the sells of SELF and OTHER.")
178
179 (def-add/subtract-method subtract-from unary-minus
180 "Subtracts from polynomial SELF another polynomial OTHER.
181This operation destructively modifies both polynomials.
182The result is stored in SELF. This implementation does
183no consing, entirely reusing the sells of SELF and OTHER.")
184
185)
186
187(defmethod unary-minus ((self poly))
188 "Destructively modifies the coefficients of the polynomial SELF,
189by changing their sign."
190 (mapc #'unary-minus (poly-termlist self))
191 self)
192
193
194(defun term-mul-lst (ring term1 term2)
195 "A special version of term multiplication. Returns (LIST TERM) where
196TERM is the product of the terms TERM1 TERM2, or NIL when the product
197is 0. This definition takes care of divisors of 0 in the coefficient
198ring."
199 (let ((c (r* (term-coeff term1) (term-coeff term2))))
200 (unless (r-zerop c)
201 (list (make-instance 'term
202 :monom (r* (term-monom term1) (term-monom term2))
203 :coeff c)))))
204
205(defun multiply-term-by-termlist (term termlist)
206 (mapcan #'(lambda (term-termlist) (term-mul-lst term term-termlist)) termlist))
207
208(defun multiply-termlist-by-term (termlist term)
209 (mapcan #'(lambda (term-termlist) (term-mul-lst term-termlist term)) termlist))
210
211
212(defun multiply-termlists (p q)
213 (cond
214 ((or (endp p) (endp q)) nil) ;p or q is 0 (represented by NIL)
215 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
216 ((endp (cdr p))
217 (multiply-term-by-termlist (car p) q)
218 ((endp (cdr q))
219 (multiply-termlist-by-term p (car q))
220 (t
221 (let ((head (multiply-terms (car p) (car q)))
222 (tail (add-termlists (term-times-termlist (car p) (cdr q))
223 (multiply-termlists (cdr p) q))))
224 (cond ((null head) tail)
225 ((null tail) head)
226 (t (nconc head tail)))))))))
227
228#|
229
230(defun poly-standard-extension (plist &aux (k (length plist)))
231 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
232is a list of polynomials."
233 (declare (list plist) (fixnum k))
234 (labels ((incf-power (g i)
235 (dolist (x (poly-termlist g))
236 (incf (monom-elt (term-monom x) i)))
237 (incf (poly-sugar g))))
238 (setf plist (poly-list-add-variables plist k))
239 (dotimes (i k plist)
240 (incf-power (nth i plist) i))))
241
242
243
244(defun saturation-extension (ring f plist
245 &aux
246 (k (length plist))
247 (d (monom-dimension (poly-lm (car plist))))
248 f-x plist-x)
249 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
250 (declare (type ring ring))
251 (setf f-x (poly-list-add-variables f k)
252 plist-x (mapcar #'(lambda (x)
253 (setf (poly-termlist x)
254 (nconc (poly-termlist x)
255 (list (make-term :monom (make-monom :dimension d)
256 :coeff (funcall (ring-uminus ring)
257 (funcall (ring-unit ring)))))))
258 x)
259 (poly-standard-extension plist)))
260 (append f-x plist-x))
261
262
263(defun polysaturation-extension (ring f plist
264 &aux
265 (k (length plist))
266 (d (+ k (monom-dimension (poly-lm (car plist)))))
267 ;; Add k variables to f
268 (f (poly-list-add-variables f k))
269 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
270 (plist (apply #'poly-append (poly-standard-extension plist))))
271 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
272 ;; Add -1 as the last term
273 (declare (type ring ring))
274 (setf (cdr (last (poly-termlist plist)))
275 (list (make-term :monom (make-monom :dimension d)
276 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
277 (append f (list plist)))
278
279(defun saturation-extension-1 (ring f p)
280 "Calculate [F, U*P-1]. It destructively modifies F."
281 (declare (type ring ring))
282 (polysaturation-extension ring f (list p)))
283
284;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
285;;
286;; Evaluation of polynomial (prefix) expressions
287;;
288;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
289
290(defun coerce-coeff (ring expr vars)
291 "Coerce an element of the coefficient ring to a constant polynomial."
292 ;; Modular arithmetic handler by rat
293 (declare (type ring ring))
294 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
295 :coeff (funcall (ring-parse ring) expr)))
296 0))
297
298(defun poly-eval (expr vars
299 &optional
300 (ring +ring-of-integers+)
301 (order #'lex>)
302 (list-marker :[)
303 &aux
304 (ring-and-order (make-ring-and-order :ring ring :order order)))
305 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
306variables VARS. Return the resulting polynomial or list of
307polynomials. Standard arithmetical operators in form EXPR are
308replaced with their analogues in the ring of polynomials, and the
309resulting expression is evaluated, resulting in a polynomial or a list
310of polynomials in internal form. A similar operation in another computer
311algebra system could be called 'expand' or so."
312 (declare (type ring ring))
313 (labels ((p-eval (arg) (poly-eval arg vars ring order))
314 (p-eval-scalar (arg) (poly-eval-scalar arg))
315 (p-eval-list (args) (mapcar #'p-eval args))
316 (p-add (x y) (poly-add ring-and-order x y)))
317 (cond
318 ((null expr) (error "Empty expression"))
319 ((eql expr 0) (make-poly-zero))
320 ((member expr vars :test #'equalp)
321 (let ((pos (position expr vars :test #'equalp)))
322 (make-poly-variable ring (length vars) pos)))
323 ((atom expr)
324 (coerce-coeff ring expr vars))
325 ((eq (car expr) list-marker)
326 (cons list-marker (p-eval-list (cdr expr))))
327 (t
328 (case (car expr)
329 (+ (reduce #'p-add (p-eval-list (cdr expr))))
330 (- (case (length expr)
331 (1 (make-poly-zero))
332 (2 (poly-uminus ring (p-eval (cadr expr))))
333 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
334 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
335 (reduce #'p-add (p-eval-list (cddr expr)))))))
336 (*
337 (if (endp (cddr expr)) ;unary
338 (p-eval (cdr expr))
339 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
340 (/
341 ;; A polynomial can be divided by a scalar
342 (cond
343 ((endp (cddr expr))
344 ;; A special case (/ ?), the inverse
345 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
346 (t
347 (let ((num (p-eval (cadr expr)))
348 (denom-inverse (apply (ring-div ring)
349 (cons (funcall (ring-unit ring))
350 (mapcar #'p-eval-scalar (cddr expr))))))
351 (scalar-times-poly ring denom-inverse num)))))
352 (expt
353 (cond
354 ((member (cadr expr) vars :test #'equalp)
355 ;;Special handling of (expt var pow)
356 (let ((pos (position (cadr expr) vars :test #'equalp)))
357 (make-poly-variable ring (length vars) pos (caddr expr))))
358 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
359 ;; Negative power means division in coefficient ring
360 ;; Non-integer power means non-polynomial coefficient
361 (coerce-coeff ring expr vars))
362 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
363 (otherwise
364 (coerce-coeff ring expr vars)))))))
365
366(defun poly-eval-scalar (expr
367 &optional
368 (ring +ring-of-integers+)
369 &aux
370 (order #'lex>))
371 "Evaluate a scalar expression EXPR in ring RING."
372 (declare (type ring ring))
373 (poly-lc (poly-eval expr nil ring order)))
374
375(defun spoly (ring-and-order f g
376 &aux
377 (ring (ro-ring ring-and-order)))
378 "It yields the S-polynomial of polynomials F and G."
379 (declare (type ring-and-order ring-and-order) (type poly f g))
380 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
381 (mf (monom-div lcm (poly-lm f)))
382 (mg (monom-div lcm (poly-lm g))))
383 (declare (type monom mf mg))
384 (multiple-value-bind (c cf cg)
385 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
386 (declare (ignore c))
387 (poly-sub
388 ring-and-order
389 (scalar-times-poly ring cg (monom-times-poly mf f))
390 (scalar-times-poly ring cf (monom-times-poly mg g))))))
391
392
393(defun poly-primitive-part (ring p)
394 "Divide polynomial P with integer coefficients by gcd of its
395coefficients and return the result."
396 (declare (type ring ring) (type poly p))
397 (if (poly-zerop p)
398 (values p 1)
399 (let ((c (poly-content ring p)))
400 (values (make-poly-from-termlist
401 (mapcar
402 #'(lambda (x)
403 (make-term :monom (term-monom x)
404 :coeff (funcall (ring-div ring) (term-coeff x) c)))
405 (poly-termlist p))
406 (poly-sugar p))
407 c))))
408
409(defun poly-content (ring p)
410 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
411to compute the greatest common divisor."
412 (declare (type ring ring) (type poly p))
413 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
414
415(defun read-infix-form (&key (stream t))
416 "Parser of infix expressions with integer/rational coefficients
417The parser will recognize two kinds of polynomial expressions:
418
419- polynomials in fully expanded forms with coefficients
420 written in front of symbolic expressions; constants can be optionally
421 enclosed in (); for example, the infix form
422 X^2-Y^2+(-4/3)*U^2*W^3-5
423 parses to
424 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
425
426- lists of polynomials; for example
427 [X-Y, X^2+3*Z]
428 parses to
429 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
430 where the first symbol [ marks a list of polynomials.
431
432-other infix expressions, for example
433 [(X-Y)*(X+Y)/Z,(X+1)^2]
434parses to:
435 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
436Currently this function is implemented using M. Kantrowitz's INFIX package."
437 (read-from-string
438 (concatenate 'string
439 "#I("
440 (with-output-to-string (s)
441 (loop
442 (multiple-value-bind (line eof)
443 (read-line stream t)
444 (format s "~A" line)
445 (when eof (return)))))
446 ")")))
447
448(defun read-poly (vars &key
449 (stream t)
450 (ring +ring-of-integers+)
451 (order #'lex>))
452 "Reads an expression in prefix form from a stream STREAM.
453The expression read from the strem should represent a polynomial or a
454list of polynomials in variables VARS, over the ring RING. The
455polynomial or list of polynomials is returned, with terms in each
456polynomial ordered according to monomial order ORDER."
457 (poly-eval (read-infix-form :stream stream) vars ring order))
458
459(defun string->poly (str vars
460 &optional
461 (ring +ring-of-integers+)
462 (order #'lex>))
463 "Converts a string STR to a polynomial in variables VARS."
464 (with-input-from-string (s str)
465 (read-poly vars :stream s :ring ring :order order)))
466
467(defun poly->alist (p)
468 "Convert a polynomial P to an association list. Thus, the format of the
469returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
470MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
471corresponding coefficient in the ring."
472 (cond
473 ((poly-p p)
474 (mapcar #'term->cons (poly-termlist p)))
475 ((and (consp p) (eq (car p) :[))
476 (cons :[ (mapcar #'poly->alist (cdr p))))))
477
478(defun string->alist (str vars
479 &optional
480 (ring +ring-of-integers+)
481 (order #'lex>))
482 "Convert a string STR representing a polynomial or polynomial list to
483an association list (... (MONOM . COEFF) ...)."
484 (poly->alist (string->poly str vars ring order)))
485
486(defun poly-equal-no-sugar-p (p q)
487 "Compare polynomials for equality, ignoring sugar."
488 (declare (type poly p q))
489 (equalp (poly-termlist p) (poly-termlist q)))
490
491(defun poly-set-equal-no-sugar-p (p q)
492 "Compare polynomial sets P and Q for equality, ignoring sugar."
493 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
494
495(defun poly-list-equal-no-sugar-p (p q)
496 "Compare polynomial lists P and Q for equality, ignoring sugar."
497 (every #'poly-equal-no-sugar-p p q))
498|#
Note: See TracBrowser for help on using the repository browser.