close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2785

Last change on this file since 2785 was 2785, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 17.3 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
27 (:documentation "Implements polynomials"))
28
29(in-package :polynomial)
30
31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
32
33(defclass poly ()
34 ((termlist :initarg :termlist :accessor poly-termlist
35 :documentation "List of terms.")
36 (order :initarg :order :accessor poly-term-order
37 :documentation "Monomial/term order."))
38 (:default-initargs :termlist nil :order #'lex>)
39 (:documentation "A polynomial with a list of terms TERMLIST, ordered
40according to term order ORDER, which defaults to LEX>."))
41
42(defmethod print-object ((self poly) stream)
43 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
44 (poly-termlist self)
45 (poly-term-order self)))
46
47(defmethod r-equalp ((self poly) (other poly))
48 "POLY instances are R-EQUALP if they have the same
49order and if all terms are R-EQUALP."
50 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
51 (eq (poly-term-order self) (poly-term-order other))))
52
53(defmethod insert-item ((self poly) (item term))
54 (push item (poly-termlist self))
55 self)
56
57(defmethod append-item ((self poly) (item term))
58 (setf (cdr (last (poly-termlist self))) (list item))
59 self)
60
61;; Leading term
62(defgeneric leading-term (object)
63 (:method ((self poly))
64 (car (poly-termlist self)))
65 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
66
67;; Second term
68(defgeneric second-leading-term (object)
69 (:method ((self poly))
70 (cadar (poly-termlist self)))
71 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
72
73;; Leading coefficient
74(defgeneric leading-coefficient (object)
75 (:method ((self poly))
76 (r-coeff (leading-term self)))
77 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
78
79;; Second coefficient
80(defgeneric second-leading-coefficient (object)
81 (:method ((self poly))
82 (r-coeff (second-leading-term self)))
83 (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
84
85;; Testing for a zero polynomial
86(defmethod r-zerop ((self poly))
87 (null (poly-termlist self)))
88
89;; The number of terms
90(defmethod r-length ((self poly))
91 (length (poly-termlist self)))
92
93(defmethod multiply-by ((self poly) (other monom))
94 (mapc #'(lambda (term) (multiply-by term other))
95 (poly-termlist self))
96 self)
97
98(defmethod multiply-by ((self poly) (other scalar))
99 (mapc #'(lambda (term) (multiply-by term other))
100 (poly-termlist self))
101 self)
102
103
104(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
105 "Return an expression which will efficiently adds/subtracts two
106polynomials, P and Q. The addition/subtraction of coefficients is
107performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
108is supplied, it is used to negate the coefficients of Q which do not
109have a corresponding coefficient in P. The code implements an
110efficient algorithm to add two polynomials represented as sorted lists
111of terms. The code destroys both arguments, reusing the terms to build
112the result."
113 `(macrolet ((lc (x) `(r-coeff (car ,x))))
114 (do ((p ,p)
115 (q ,q)
116 r)
117 ((or (endp p) (endp q))
118 ;; NOTE: R contains the result in reverse order. Can it
119 ;; be more efficient to produce the terms in correct order?
120 (unless (endp q)
121 ;; Upon subtraction, we must change the sign of
122 ;; all coefficients in q
123 ,@(when uminus-fn
124 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
125 (setf r (nreconc r q)))
126 r)
127 (multiple-value-bind
128 (greater-p equal-p)
129 (funcall ,order-fn (car p) (car q))
130 (cond
131 (greater-p
132 (rotatef (cdr p) r p)
133 )
134 (equal-p
135 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
136 (cond
137 ((r-zerop s)
138 (setf p (cdr p))
139 )
140 (t
141 (setf (lc p) s)
142 (rotatef (cdr p) r p))))
143 (setf q (cdr q))
144 )
145 (t
146 ;;Negate the term of Q if UMINUS provided, signallig
147 ;;that we are doing subtraction
148 ,@(when uminus-fn
149 `((setf (lc q) (funcall ,uminus-fn (lc q)))))
150 (rotatef (cdr q) r q)))))))
151
152
153(defmacro def-add/subtract-method (add/subtract-method-name
154 uminus-method-name
155 &optional
156 (doc-string nil doc-string-supplied-p))
157 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
158 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
159 ,@(when doc-string-supplied-p `(,doc-string))
160 ;; Ensure orders are compatible
161 (unless (eq (poly-term-order self) (poly-term-order other))
162 (setf (poly-termlist other) (sort (poly-termlist other) (poly-term-order self))
163 (poly-term-order other) (poly-term-order self)))
164 (setf (poly-termlist self) (fast-add/subtract
165 (poly-termlist self) (poly-termlist other)
166 (poly-term-order self)
167 #',add/subtract-method-name
168 ,(when uminus-method-name `(function ,uminus-method-name))))
169 self))
170
171(eval-when (:compile-toplevel :load-toplevel :execute)
172
173 (def-add/subtract-method add-to nil
174 "Adds to polynomial SELF another polynomial OTHER.
175This operation destructively modifies both polynomials.
176The result is stored in SELF. This implementation does
177no consing, entirely reusing the sells of SELF and OTHER.")
178
179 (def-add/subtract-method subtract-from unary-minus
180 "Subtracts from polynomial SELF another polynomial OTHER.
181This operation destructively modifies both polynomials.
182The result is stored in SELF. This implementation does
183no consing, entirely reusing the sells of SELF and OTHER.")
184
185)
186
187(defmethod unary-minus ((self poly))
188 "Destructively modifies the coefficients of the polynomial SELF,
189by changing their sign."
190 (mapc #'unary-minus (poly-termlist self))
191 self)
192
193
194;; Multiplication of polynomials
195;; Non-destructive version
196(defun termlist-mul (ring-and-order p q
197 &aux (ring (ro-ring ring-and-order)))
198 (declare (ring-and-order ring-and-order))
199 (cond ((or (endp p) (endp q)) nil) ;p or q is 0 (represented by NIL)
200 ;; If p=p0+p1 and q=q0+q1 then pq=p0q0+p0q1+p1q
201 ((endp (cdr p))
202 (term-times-termlist ring (car p) q))
203 ((endp (cdr q))
204 (termlist-times-term ring p (car q)))
205 (t
206 (let ((head (term-mul-lst ring (termlist-lt p) (termlist-lt q)))
207 (tail (termlist-add ring-and-order
208 (term-times-termlist ring (car p) (cdr q))
209 (termlist-mul ring-and-order (cdr p) q))))
210 (cond ((null head) tail)
211 ((null tail) head)
212 (t (nconc head tail)))))))
213
214
215
216#|
217
218(defun poly-standard-extension (plist &aux (k (length plist)))
219 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
220is a list of polynomials."
221 (declare (list plist) (fixnum k))
222 (labels ((incf-power (g i)
223 (dolist (x (poly-termlist g))
224 (incf (monom-elt (term-monom x) i)))
225 (incf (poly-sugar g))))
226 (setf plist (poly-list-add-variables plist k))
227 (dotimes (i k plist)
228 (incf-power (nth i plist) i))))
229
230
231
232(defun saturation-extension (ring f plist
233 &aux
234 (k (length plist))
235 (d (monom-dimension (poly-lm (car plist))))
236 f-x plist-x)
237 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
238 (declare (type ring ring))
239 (setf f-x (poly-list-add-variables f k)
240 plist-x (mapcar #'(lambda (x)
241 (setf (poly-termlist x)
242 (nconc (poly-termlist x)
243 (list (make-term :monom (make-monom :dimension d)
244 :coeff (funcall (ring-uminus ring)
245 (funcall (ring-unit ring)))))))
246 x)
247 (poly-standard-extension plist)))
248 (append f-x plist-x))
249
250
251(defun polysaturation-extension (ring f plist
252 &aux
253 (k (length plist))
254 (d (+ k (monom-dimension (poly-lm (car plist)))))
255 ;; Add k variables to f
256 (f (poly-list-add-variables f k))
257 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
258 (plist (apply #'poly-append (poly-standard-extension plist))))
259 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
260 ;; Add -1 as the last term
261 (declare (type ring ring))
262 (setf (cdr (last (poly-termlist plist)))
263 (list (make-term :monom (make-monom :dimension d)
264 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
265 (append f (list plist)))
266
267(defun saturation-extension-1 (ring f p)
268 "Calculate [F, U*P-1]. It destructively modifies F."
269 (declare (type ring ring))
270 (polysaturation-extension ring f (list p)))
271
272;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
273;;
274;; Evaluation of polynomial (prefix) expressions
275;;
276;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
277
278(defun coerce-coeff (ring expr vars)
279 "Coerce an element of the coefficient ring to a constant polynomial."
280 ;; Modular arithmetic handler by rat
281 (declare (type ring ring))
282 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
283 :coeff (funcall (ring-parse ring) expr)))
284 0))
285
286(defun poly-eval (expr vars
287 &optional
288 (ring +ring-of-integers+)
289 (order #'lex>)
290 (list-marker :[)
291 &aux
292 (ring-and-order (make-ring-and-order :ring ring :order order)))
293 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
294variables VARS. Return the resulting polynomial or list of
295polynomials. Standard arithmetical operators in form EXPR are
296replaced with their analogues in the ring of polynomials, and the
297resulting expression is evaluated, resulting in a polynomial or a list
298of polynomials in internal form. A similar operation in another computer
299algebra system could be called 'expand' or so."
300 (declare (type ring ring))
301 (labels ((p-eval (arg) (poly-eval arg vars ring order))
302 (p-eval-scalar (arg) (poly-eval-scalar arg))
303 (p-eval-list (args) (mapcar #'p-eval args))
304 (p-add (x y) (poly-add ring-and-order x y)))
305 (cond
306 ((null expr) (error "Empty expression"))
307 ((eql expr 0) (make-poly-zero))
308 ((member expr vars :test #'equalp)
309 (let ((pos (position expr vars :test #'equalp)))
310 (make-poly-variable ring (length vars) pos)))
311 ((atom expr)
312 (coerce-coeff ring expr vars))
313 ((eq (car expr) list-marker)
314 (cons list-marker (p-eval-list (cdr expr))))
315 (t
316 (case (car expr)
317 (+ (reduce #'p-add (p-eval-list (cdr expr))))
318 (- (case (length expr)
319 (1 (make-poly-zero))
320 (2 (poly-uminus ring (p-eval (cadr expr))))
321 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
322 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
323 (reduce #'p-add (p-eval-list (cddr expr)))))))
324 (*
325 (if (endp (cddr expr)) ;unary
326 (p-eval (cdr expr))
327 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
328 (/
329 ;; A polynomial can be divided by a scalar
330 (cond
331 ((endp (cddr expr))
332 ;; A special case (/ ?), the inverse
333 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
334 (t
335 (let ((num (p-eval (cadr expr)))
336 (denom-inverse (apply (ring-div ring)
337 (cons (funcall (ring-unit ring))
338 (mapcar #'p-eval-scalar (cddr expr))))))
339 (scalar-times-poly ring denom-inverse num)))))
340 (expt
341 (cond
342 ((member (cadr expr) vars :test #'equalp)
343 ;;Special handling of (expt var pow)
344 (let ((pos (position (cadr expr) vars :test #'equalp)))
345 (make-poly-variable ring (length vars) pos (caddr expr))))
346 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
347 ;; Negative power means division in coefficient ring
348 ;; Non-integer power means non-polynomial coefficient
349 (coerce-coeff ring expr vars))
350 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
351 (otherwise
352 (coerce-coeff ring expr vars)))))))
353
354(defun poly-eval-scalar (expr
355 &optional
356 (ring +ring-of-integers+)
357 &aux
358 (order #'lex>))
359 "Evaluate a scalar expression EXPR in ring RING."
360 (declare (type ring ring))
361 (poly-lc (poly-eval expr nil ring order)))
362
363(defun spoly (ring-and-order f g
364 &aux
365 (ring (ro-ring ring-and-order)))
366 "It yields the S-polynomial of polynomials F and G."
367 (declare (type ring-and-order ring-and-order) (type poly f g))
368 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
369 (mf (monom-div lcm (poly-lm f)))
370 (mg (monom-div lcm (poly-lm g))))
371 (declare (type monom mf mg))
372 (multiple-value-bind (c cf cg)
373 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
374 (declare (ignore c))
375 (poly-sub
376 ring-and-order
377 (scalar-times-poly ring cg (monom-times-poly mf f))
378 (scalar-times-poly ring cf (monom-times-poly mg g))))))
379
380
381(defun poly-primitive-part (ring p)
382 "Divide polynomial P with integer coefficients by gcd of its
383coefficients and return the result."
384 (declare (type ring ring) (type poly p))
385 (if (poly-zerop p)
386 (values p 1)
387 (let ((c (poly-content ring p)))
388 (values (make-poly-from-termlist
389 (mapcar
390 #'(lambda (x)
391 (make-term :monom (term-monom x)
392 :coeff (funcall (ring-div ring) (term-coeff x) c)))
393 (poly-termlist p))
394 (poly-sugar p))
395 c))))
396
397(defun poly-content (ring p)
398 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
399to compute the greatest common divisor."
400 (declare (type ring ring) (type poly p))
401 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
402
403(defun read-infix-form (&key (stream t))
404 "Parser of infix expressions with integer/rational coefficients
405The parser will recognize two kinds of polynomial expressions:
406
407- polynomials in fully expanded forms with coefficients
408 written in front of symbolic expressions; constants can be optionally
409 enclosed in (); for example, the infix form
410 X^2-Y^2+(-4/3)*U^2*W^3-5
411 parses to
412 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
413
414- lists of polynomials; for example
415 [X-Y, X^2+3*Z]
416 parses to
417 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
418 where the first symbol [ marks a list of polynomials.
419
420-other infix expressions, for example
421 [(X-Y)*(X+Y)/Z,(X+1)^2]
422parses to:
423 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
424Currently this function is implemented using M. Kantrowitz's INFIX package."
425 (read-from-string
426 (concatenate 'string
427 "#I("
428 (with-output-to-string (s)
429 (loop
430 (multiple-value-bind (line eof)
431 (read-line stream t)
432 (format s "~A" line)
433 (when eof (return)))))
434 ")")))
435
436(defun read-poly (vars &key
437 (stream t)
438 (ring +ring-of-integers+)
439 (order #'lex>))
440 "Reads an expression in prefix form from a stream STREAM.
441The expression read from the strem should represent a polynomial or a
442list of polynomials in variables VARS, over the ring RING. The
443polynomial or list of polynomials is returned, with terms in each
444polynomial ordered according to monomial order ORDER."
445 (poly-eval (read-infix-form :stream stream) vars ring order))
446
447(defun string->poly (str vars
448 &optional
449 (ring +ring-of-integers+)
450 (order #'lex>))
451 "Converts a string STR to a polynomial in variables VARS."
452 (with-input-from-string (s str)
453 (read-poly vars :stream s :ring ring :order order)))
454
455(defun poly->alist (p)
456 "Convert a polynomial P to an association list. Thus, the format of the
457returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
458MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
459corresponding coefficient in the ring."
460 (cond
461 ((poly-p p)
462 (mapcar #'term->cons (poly-termlist p)))
463 ((and (consp p) (eq (car p) :[))
464 (cons :[ (mapcar #'poly->alist (cdr p))))))
465
466(defun string->alist (str vars
467 &optional
468 (ring +ring-of-integers+)
469 (order #'lex>))
470 "Convert a string STR representing a polynomial or polynomial list to
471an association list (... (MONOM . COEFF) ...)."
472 (poly->alist (string->poly str vars ring order)))
473
474(defun poly-equal-no-sugar-p (p q)
475 "Compare polynomials for equality, ignoring sugar."
476 (declare (type poly p q))
477 (equalp (poly-termlist p) (poly-termlist q)))
478
479(defun poly-set-equal-no-sugar-p (p q)
480 "Compare polynomial sets P and Q for equality, ignoring sugar."
481 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
482
483(defun poly-list-equal-no-sugar-p (p q)
484 "Compare polynomial lists P and Q for equality, ignoring sugar."
485 (every #'poly-equal-no-sugar-p p q))
486|#
Note: See TracBrowser for help on using the repository browser.