close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2764

Last change on this file since 2764 was 2764, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 16.3 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
27 (:documentation "Implements polynomials"))
28
29(in-package :polynomial)
30
31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
32
33(defclass poly ()
34 ((termlist :initarg :termlist :accessor poly-termlist
35 :documentation "List of terms.")
36 (order :initarg :order :accessor poly-term-order
37 :documentation "Monomial/term order."))
38 (:default-initargs :termlist nil :order #'lex>)
39 (:documentation "A polynomial with a list of terms TERMLIST, ordered
40according to term order ORDER, which defaults to LEX>."))
41
42(defmethod print-object ((self poly) stream)
43 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
44 (poly-termlist self)
45 (poly-term-order self)))
46
47(defmethod r-equalp ((self poly) (other poly))
48 "POLY instances are R-EQUALP if they have the same
49order and if all terms are R-EQUALP."
50 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
51 (eq (poly-term-order self) (poly-term-order other))))
52
53(defmethod insert-item ((self poly) (item term))
54 (push item (poly-termlist self))
55 self)
56
57(defmethod append-item ((self poly) (item term))
58 (setf (cdr (last (poly-termlist self))) (list item))
59 self)
60
61;; Leading term
62(defgeneric leading-term (object)
63 (:method ((self poly))
64 (car (poly-termlist self)))
65 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
66
67;; Second term
68(defgeneric second-leading-term (object)
69 (:method ((self poly))
70 (cadar (poly-termlist self)))
71 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
72
73;; Leading coefficient
74(defgeneric leading-coefficient (object)
75 (:method ((self poly))
76 (r-coeff (leading-term self)))
77 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
78
79;; Second coefficient
80(defgeneric second-leading-coefficient (object)
81 (:method ((self poly))
82 (r-coeff (second-leading-term self)))
83 (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
84
85;; Testing for a zero polynomial
86(defmethod r-zerop ((self poly))
87 (null (poly-termlist self)))
88
89;; The number of terms
90(defmethod r-length ((self poly))
91 (length (poly-termlist self)))
92
93(defmethod multiply-by ((self poly) (other monom))
94 (mapc #'(lambda (term) (multiply-by term other))
95 (poly-termlist self))
96 self)
97
98(defmethod multiply-by ((self poly) (other scalar))
99 (mapc #'(lambda (term) (multiply-by term other))
100 (poly-termlist self))
101 self)
102
103
104(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
105 "Return an expression which will efficiently adds/subtracts two
106polynomials, P and Q. The addition/subtraction of coefficients is
107performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
108is supplied, it is used to negate the coefficients of Q which do not
109have a corresponding coefficient in P. The code implements an
110efficient algorithm to add two polynomials represented as sorted lists
111of terms. The code destroys both arguments, reusing the terms to build
112the result."
113 `(macrolet ((lc (x) `(r-coeff (car ,x))))
114 (do ((p ,p)
115 (q ,q)
116 r)
117 ((or (endp p) (endp q))
118 ;; NOTE: R contains the result in reverse order. Can it
119 ;; be more efficient to produce the terms in correct order?
120 (unless (endp q) (setf r (nreconc r q)))
121 r)
122 (multiple-value-bind
123 (greater-p equal-p)
124 (,order-fn (car p) (car q))
125 (cond
126 (greater-p
127 (rotatef (cdr p) r p)
128 )
129 (equal-p
130 (let ((s (,add/subtract-fn (lc p) (lc q))))
131 (cond
132 ((r-zerop s)
133 (setf p (cdr p))
134 )
135 (t
136 (setf (lc p) s)
137 (rotatef (cdr p) r p))))
138 (setf q (cdr q))
139 )
140 (t
141 ;;Negate the term of Q if UMINUS provided, signallig
142 ;;that we are doing subtraction
143 ,@(when uminus-fn
144 `((setf (lc q) (,uminus-fn (lc q)))))
145 (rotatef (cdr q) r q)))))))
146
147
148(defmacro def-add/subtract-method (add/subtract-method-name
149 uminus-method-name
150 &optional
151 (doc-string nil doc-string-supplied-p))
152 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
153 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
154 ,@(when doc-string-supplied-p `(,doc-string))
155 (with-slots ((termlist1 termlist) (order1 order))
156 self
157 (with-slots ((termlist2 termlist) (order2 order))
158 other
159 ;; Ensure orders are compatible
160 (unless (eq order1 order2)
161 (setf termlist2 (sort termlist2 order1)
162 order2 order1))
163 (setf termlist1 (fast-add/subtract
164 termlist1 termlist2 #'order1
165 #',add/subtract-method-name
166 #',uminus-method-name))))
167 self))
168
169(def-add/subtract-method add-to nil
170 "Adds to polynomial SELF another polynomial OTHER.
171This operation destructively modifies both polynomials.
172The result is stored in SELF. This implementation does
173no consing, entirely reusing the sells of SELF and OTHER.")
174
175(def-add/subtract-method subtract-from unary-minus
176 "Subtracts from polynomial SELF another polynomial OTHER.
177This operation destructively modifies both polynomials.
178The result is stored in SELF. This implementation does
179no consing, entirely reusing the sells of SELF and OTHER.")
180
181(defmethod unary-minus ((self poly))
182 "Destructively modifies the coefficients of the polynomial SELF,
183by changing their sign."
184 (mapc #'unary-minus (poly-termlist self))
185 self)
186
187#|
188
189(defun poly-standard-extension (plist &aux (k (length plist)))
190 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
191is a list of polynomials."
192 (declare (list plist) (fixnum k))
193 (labels ((incf-power (g i)
194 (dolist (x (poly-termlist g))
195 (incf (monom-elt (term-monom x) i)))
196 (incf (poly-sugar g))))
197 (setf plist (poly-list-add-variables plist k))
198 (dotimes (i k plist)
199 (incf-power (nth i plist) i))))
200
201
202
203(defun saturation-extension (ring f plist
204 &aux
205 (k (length plist))
206 (d (monom-dimension (poly-lm (car plist))))
207 f-x plist-x)
208 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
209 (declare (type ring ring))
210 (setf f-x (poly-list-add-variables f k)
211 plist-x (mapcar #'(lambda (x)
212 (setf (poly-termlist x)
213 (nconc (poly-termlist x)
214 (list (make-term :monom (make-monom :dimension d)
215 :coeff (funcall (ring-uminus ring)
216 (funcall (ring-unit ring)))))))
217 x)
218 (poly-standard-extension plist)))
219 (append f-x plist-x))
220
221
222(defun polysaturation-extension (ring f plist
223 &aux
224 (k (length plist))
225 (d (+ k (monom-dimension (poly-lm (car plist)))))
226 ;; Add k variables to f
227 (f (poly-list-add-variables f k))
228 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
229 (plist (apply #'poly-append (poly-standard-extension plist))))
230 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
231 ;; Add -1 as the last term
232 (declare (type ring ring))
233 (setf (cdr (last (poly-termlist plist)))
234 (list (make-term :monom (make-monom :dimension d)
235 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
236 (append f (list plist)))
237
238(defun saturation-extension-1 (ring f p)
239 "Calculate [F, U*P-1]. It destructively modifies F."
240 (declare (type ring ring))
241 (polysaturation-extension ring f (list p)))
242
243;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
244;;
245;; Evaluation of polynomial (prefix) expressions
246;;
247;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
248
249(defun coerce-coeff (ring expr vars)
250 "Coerce an element of the coefficient ring to a constant polynomial."
251 ;; Modular arithmetic handler by rat
252 (declare (type ring ring))
253 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
254 :coeff (funcall (ring-parse ring) expr)))
255 0))
256
257(defun poly-eval (expr vars
258 &optional
259 (ring +ring-of-integers+)
260 (order #'lex>)
261 (list-marker :[)
262 &aux
263 (ring-and-order (make-ring-and-order :ring ring :order order)))
264 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
265variables VARS. Return the resulting polynomial or list of
266polynomials. Standard arithmetical operators in form EXPR are
267replaced with their analogues in the ring of polynomials, and the
268resulting expression is evaluated, resulting in a polynomial or a list
269of polynomials in internal form. A similar operation in another computer
270algebra system could be called 'expand' or so."
271 (declare (type ring ring))
272 (labels ((p-eval (arg) (poly-eval arg vars ring order))
273 (p-eval-scalar (arg) (poly-eval-scalar arg))
274 (p-eval-list (args) (mapcar #'p-eval args))
275 (p-add (x y) (poly-add ring-and-order x y)))
276 (cond
277 ((null expr) (error "Empty expression"))
278 ((eql expr 0) (make-poly-zero))
279 ((member expr vars :test #'equalp)
280 (let ((pos (position expr vars :test #'equalp)))
281 (make-poly-variable ring (length vars) pos)))
282 ((atom expr)
283 (coerce-coeff ring expr vars))
284 ((eq (car expr) list-marker)
285 (cons list-marker (p-eval-list (cdr expr))))
286 (t
287 (case (car expr)
288 (+ (reduce #'p-add (p-eval-list (cdr expr))))
289 (- (case (length expr)
290 (1 (make-poly-zero))
291 (2 (poly-uminus ring (p-eval (cadr expr))))
292 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
293 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
294 (reduce #'p-add (p-eval-list (cddr expr)))))))
295 (*
296 (if (endp (cddr expr)) ;unary
297 (p-eval (cdr expr))
298 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
299 (/
300 ;; A polynomial can be divided by a scalar
301 (cond
302 ((endp (cddr expr))
303 ;; A special case (/ ?), the inverse
304 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
305 (t
306 (let ((num (p-eval (cadr expr)))
307 (denom-inverse (apply (ring-div ring)
308 (cons (funcall (ring-unit ring))
309 (mapcar #'p-eval-scalar (cddr expr))))))
310 (scalar-times-poly ring denom-inverse num)))))
311 (expt
312 (cond
313 ((member (cadr expr) vars :test #'equalp)
314 ;;Special handling of (expt var pow)
315 (let ((pos (position (cadr expr) vars :test #'equalp)))
316 (make-poly-variable ring (length vars) pos (caddr expr))))
317 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
318 ;; Negative power means division in coefficient ring
319 ;; Non-integer power means non-polynomial coefficient
320 (coerce-coeff ring expr vars))
321 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
322 (otherwise
323 (coerce-coeff ring expr vars)))))))
324
325(defun poly-eval-scalar (expr
326 &optional
327 (ring +ring-of-integers+)
328 &aux
329 (order #'lex>))
330 "Evaluate a scalar expression EXPR in ring RING."
331 (declare (type ring ring))
332 (poly-lc (poly-eval expr nil ring order)))
333
334(defun spoly (ring-and-order f g
335 &aux
336 (ring (ro-ring ring-and-order)))
337 "It yields the S-polynomial of polynomials F and G."
338 (declare (type ring-and-order ring-and-order) (type poly f g))
339 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
340 (mf (monom-div lcm (poly-lm f)))
341 (mg (monom-div lcm (poly-lm g))))
342 (declare (type monom mf mg))
343 (multiple-value-bind (c cf cg)
344 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
345 (declare (ignore c))
346 (poly-sub
347 ring-and-order
348 (scalar-times-poly ring cg (monom-times-poly mf f))
349 (scalar-times-poly ring cf (monom-times-poly mg g))))))
350
351
352(defun poly-primitive-part (ring p)
353 "Divide polynomial P with integer coefficients by gcd of its
354coefficients and return the result."
355 (declare (type ring ring) (type poly p))
356 (if (poly-zerop p)
357 (values p 1)
358 (let ((c (poly-content ring p)))
359 (values (make-poly-from-termlist
360 (mapcar
361 #'(lambda (x)
362 (make-term :monom (term-monom x)
363 :coeff (funcall (ring-div ring) (term-coeff x) c)))
364 (poly-termlist p))
365 (poly-sugar p))
366 c))))
367
368(defun poly-content (ring p)
369 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
370to compute the greatest common divisor."
371 (declare (type ring ring) (type poly p))
372 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
373
374(defun read-infix-form (&key (stream t))
375 "Parser of infix expressions with integer/rational coefficients
376The parser will recognize two kinds of polynomial expressions:
377
378- polynomials in fully expanded forms with coefficients
379 written in front of symbolic expressions; constants can be optionally
380 enclosed in (); for example, the infix form
381 X^2-Y^2+(-4/3)*U^2*W^3-5
382 parses to
383 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
384
385- lists of polynomials; for example
386 [X-Y, X^2+3*Z]
387 parses to
388 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
389 where the first symbol [ marks a list of polynomials.
390
391-other infix expressions, for example
392 [(X-Y)*(X+Y)/Z,(X+1)^2]
393parses to:
394 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
395Currently this function is implemented using M. Kantrowitz's INFIX package."
396 (read-from-string
397 (concatenate 'string
398 "#I("
399 (with-output-to-string (s)
400 (loop
401 (multiple-value-bind (line eof)
402 (read-line stream t)
403 (format s "~A" line)
404 (when eof (return)))))
405 ")")))
406
407(defun read-poly (vars &key
408 (stream t)
409 (ring +ring-of-integers+)
410 (order #'lex>))
411 "Reads an expression in prefix form from a stream STREAM.
412The expression read from the strem should represent a polynomial or a
413list of polynomials in variables VARS, over the ring RING. The
414polynomial or list of polynomials is returned, with terms in each
415polynomial ordered according to monomial order ORDER."
416 (poly-eval (read-infix-form :stream stream) vars ring order))
417
418(defun string->poly (str vars
419 &optional
420 (ring +ring-of-integers+)
421 (order #'lex>))
422 "Converts a string STR to a polynomial in variables VARS."
423 (with-input-from-string (s str)
424 (read-poly vars :stream s :ring ring :order order)))
425
426(defun poly->alist (p)
427 "Convert a polynomial P to an association list. Thus, the format of the
428returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
429MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
430corresponding coefficient in the ring."
431 (cond
432 ((poly-p p)
433 (mapcar #'term->cons (poly-termlist p)))
434 ((and (consp p) (eq (car p) :[))
435 (cons :[ (mapcar #'poly->alist (cdr p))))))
436
437(defun string->alist (str vars
438 &optional
439 (ring +ring-of-integers+)
440 (order #'lex>))
441 "Convert a string STR representing a polynomial or polynomial list to
442an association list (... (MONOM . COEFF) ...)."
443 (poly->alist (string->poly str vars ring order)))
444
445(defun poly-equal-no-sugar-p (p q)
446 "Compare polynomials for equality, ignoring sugar."
447 (declare (type poly p q))
448 (equalp (poly-termlist p) (poly-termlist q)))
449
450(defun poly-set-equal-no-sugar-p (p q)
451 "Compare polynomial sets P and Q for equality, ignoring sugar."
452 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
453
454(defun poly-list-equal-no-sugar-p (p q)
455 "Compare polynomial lists P and Q for equality, ignoring sugar."
456 (every #'poly-equal-no-sugar-p p q))
457|#
Note: See TracBrowser for help on using the repository browser.