close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2754

Last change on this file since 2754 was 2754, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 16.1 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
27 (:documentation "Implements polynomials"))
28
29(in-package :polynomial)
30
31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
32
33(defclass poly ()
34 ((termlist :initarg :termlist :accessor poly-termlist
35 :documentation "List of terms.")
36 (order :initarg :order :accessor poly-term-order
37 :documentation "Monomial/term order."))
38 (:default-initargs :termlist nil :order #'lex>)
39 (:documentation "A polynomial with a list of terms TERMLIST, ordered
40according to term order ORDER, which defaults to LEX>."))
41
42(defmethod print-object ((self poly) stream)
43 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
44 (poly-termlist self)
45 (poly-term-order self)))
46
47(defmethod r-equalp ((self poly) (other poly))
48 "POLY instances are R-EQUALP if they have the same
49order and if all terms are R-EQUALP."
50 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
51 (eq (poly-term-order self) (poly-term-order other))))
52
53(defmethod insert-item ((self poly) (item term))
54 (push item (poly-termlist self))
55 self)
56
57(defmethod append-item ((self poly) (item term))
58 (setf (cdr (last (poly-termlist self))) (list item))
59 self)
60
61;; Leading term
62(defgeneric leading-term (object)
63 (:method ((self poly))
64 (car (poly-termlist self)))
65 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
66
67;; Second term
68(defgeneric second-leading-term (object)
69 (:method ((self poly))
70 (cadar (poly-termlist self)))
71 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
72
73;; Leading coefficient
74(defgeneric leading-coefficient (object)
75 (:method ((self poly))
76 (r-coeff (leading-term self)))
77 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
78
79;; Second coefficient
80(defgeneric second-leading-coefficient (object)
81 (:method ((self poly))
82 (r-coeff (second-leading-term self)))
83 (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
84
85;; Testing for a zero polynomial
86(defmethod r-zerop ((self poly))
87 (null (poly-termlist self)))
88
89;; The number of terms
90(defmethod r-length ((self poly))
91 (length (poly-termlist self)))
92
93(defmethod multiply-by ((self poly) (other monom))
94 (mapc #'(lambda (term) (multiply-by term other))
95 (poly-termlist self))
96 self)
97
98(defmethod multiply-by ((self poly) (other scalar))
99 (mapc #'(lambda (term) (multiply-by term other))
100 (poly-termlist self))
101 self)
102
103
104(defmacro fast-add/subtract (p q order-fn add/subtract-fun
105 &optional
106 (uminus-fun nil uminus-fun-supplied-p))
107 "Return an expression which will efficiently of two polynomials. Implements an efficient
108algorithm to add two polynomials represented as sorted lists of
109terms. This function destroys both arguments, reusing the terms to
110build the result."
111 `(macrolet ((lc (x) `(r-coeff (car ,x))))
112 (do ((p ,p)
113 (q ,q)
114 r)
115 ((or (endp p) (endp q))
116 ;; NOTE: R contains the result in reverse order. Can it
117 ;; be more efficient to produce the terms in correct order?
118 (unless (endp q) (setf r (nreconc r q)))
119 r)
120 (multiple-value-bind
121 (greater-p equal-p)
122 (funcall ,order-fn (car p) (car q))
123 (cond
124 (greater-p
125 (rotatef (cdr p) r p)
126 )
127 (equal-p
128 (let ((s (funcall ,add/subtract-fun (lc p) (lc q))))
129 (cond
130 ((r-zerop s)
131 (setf p (cdr p))
132 )
133 (t
134 (setf (lc p) s)
135 (rotatef (cdr p) r p))))
136 (setf q (cdr q))
137 )
138 (t
139 ;;Negate the term of Q if UMINUS provided, signallig
140 ;;that we are doing subtraction
141 ,@(when uminus-fun-supplied-p
142 `((setf (lc q) (funcall ,uminus-fun (lc q)))))
143 (rotatef (cdr q) r q)))))))
144
145
146(defmacro def-add/subtract-method (add/subtract-method-name
147 uminus-method-name
148 &optional
149 (doc-string nil doc-string-supplied-p))
150 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
151 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
152 ,@(when doc-string-supplied-p `(,doc-string))
153 (with-slots ((termlist1 termlist) (order1 order))
154 self
155 (with-slots ((termlist2 termlist) (order2 order))
156 other
157 ;; Ensure orders are compatible
158 (unless (eq order1 order2)
159 (setf termlist2 (sort termlist2 order1)
160 order2 order1))
161 (setf termlist1 (fast-add/subtract
162 termlist1 termlist2 order1
163 ,add/subtract-method-name
164 ,uminus-method-name))))
165 self))
166
167(def-add/subtract-method add-to nil
168 "Adds to polynomial SELF another polynomial OTHER.
169This operation destructively modifies both polynomials.
170The result is stored in SELF. This implementation does
171no consing, entirely reusing the sells of SELF and OTHER.")
172
173(def-add/subtract-method subtract-from unary-minus
174 "Subtracts from polynomial SELF another polynomial OTHER.
175This operation destructively modifies both polynomials.
176The result is stored in SELF. This implementation does
177no consing, entirely reusing the sells of SELF and OTHER.")
178
179(defmethod unary-minus ((self poly))
180 "Destructively modifies the coefficients of the polynomial SELF,
181by changing their sign."
182 (mapc #'unary-minus (poly-termlist self))
183 self)
184
185#|
186
187(defun poly-standard-extension (plist &aux (k (length plist)))
188 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
189is a list of polynomials."
190 (declare (list plist) (fixnum k))
191 (labels ((incf-power (g i)
192 (dolist (x (poly-termlist g))
193 (incf (monom-elt (term-monom x) i)))
194 (incf (poly-sugar g))))
195 (setf plist (poly-list-add-variables plist k))
196 (dotimes (i k plist)
197 (incf-power (nth i plist) i))))
198
199
200
201(defun saturation-extension (ring f plist
202 &aux
203 (k (length plist))
204 (d (monom-dimension (poly-lm (car plist))))
205 f-x plist-x)
206 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
207 (declare (type ring ring))
208 (setf f-x (poly-list-add-variables f k)
209 plist-x (mapcar #'(lambda (x)
210 (setf (poly-termlist x)
211 (nconc (poly-termlist x)
212 (list (make-term :monom (make-monom :dimension d)
213 :coeff (funcall (ring-uminus ring)
214 (funcall (ring-unit ring)))))))
215 x)
216 (poly-standard-extension plist)))
217 (append f-x plist-x))
218
219
220(defun polysaturation-extension (ring f plist
221 &aux
222 (k (length plist))
223 (d (+ k (monom-dimension (poly-lm (car plist)))))
224 ;; Add k variables to f
225 (f (poly-list-add-variables f k))
226 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
227 (plist (apply #'poly-append (poly-standard-extension plist))))
228 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
229 ;; Add -1 as the last term
230 (declare (type ring ring))
231 (setf (cdr (last (poly-termlist plist)))
232 (list (make-term :monom (make-monom :dimension d)
233 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
234 (append f (list plist)))
235
236(defun saturation-extension-1 (ring f p)
237 "Calculate [F, U*P-1]. It destructively modifies F."
238 (declare (type ring ring))
239 (polysaturation-extension ring f (list p)))
240
241;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
242;;
243;; Evaluation of polynomial (prefix) expressions
244;;
245;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
246
247(defun coerce-coeff (ring expr vars)
248 "Coerce an element of the coefficient ring to a constant polynomial."
249 ;; Modular arithmetic handler by rat
250 (declare (type ring ring))
251 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
252 :coeff (funcall (ring-parse ring) expr)))
253 0))
254
255(defun poly-eval (expr vars
256 &optional
257 (ring +ring-of-integers+)
258 (order #'lex>)
259 (list-marker :[)
260 &aux
261 (ring-and-order (make-ring-and-order :ring ring :order order)))
262 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
263variables VARS. Return the resulting polynomial or list of
264polynomials. Standard arithmetical operators in form EXPR are
265replaced with their analogues in the ring of polynomials, and the
266resulting expression is evaluated, resulting in a polynomial or a list
267of polynomials in internal form. A similar operation in another computer
268algebra system could be called 'expand' or so."
269 (declare (type ring ring))
270 (labels ((p-eval (arg) (poly-eval arg vars ring order))
271 (p-eval-scalar (arg) (poly-eval-scalar arg))
272 (p-eval-list (args) (mapcar #'p-eval args))
273 (p-add (x y) (poly-add ring-and-order x y)))
274 (cond
275 ((null expr) (error "Empty expression"))
276 ((eql expr 0) (make-poly-zero))
277 ((member expr vars :test #'equalp)
278 (let ((pos (position expr vars :test #'equalp)))
279 (make-poly-variable ring (length vars) pos)))
280 ((atom expr)
281 (coerce-coeff ring expr vars))
282 ((eq (car expr) list-marker)
283 (cons list-marker (p-eval-list (cdr expr))))
284 (t
285 (case (car expr)
286 (+ (reduce #'p-add (p-eval-list (cdr expr))))
287 (- (case (length expr)
288 (1 (make-poly-zero))
289 (2 (poly-uminus ring (p-eval (cadr expr))))
290 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
291 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
292 (reduce #'p-add (p-eval-list (cddr expr)))))))
293 (*
294 (if (endp (cddr expr)) ;unary
295 (p-eval (cdr expr))
296 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
297 (/
298 ;; A polynomial can be divided by a scalar
299 (cond
300 ((endp (cddr expr))
301 ;; A special case (/ ?), the inverse
302 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
303 (t
304 (let ((num (p-eval (cadr expr)))
305 (denom-inverse (apply (ring-div ring)
306 (cons (funcall (ring-unit ring))
307 (mapcar #'p-eval-scalar (cddr expr))))))
308 (scalar-times-poly ring denom-inverse num)))))
309 (expt
310 (cond
311 ((member (cadr expr) vars :test #'equalp)
312 ;;Special handling of (expt var pow)
313 (let ((pos (position (cadr expr) vars :test #'equalp)))
314 (make-poly-variable ring (length vars) pos (caddr expr))))
315 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
316 ;; Negative power means division in coefficient ring
317 ;; Non-integer power means non-polynomial coefficient
318 (coerce-coeff ring expr vars))
319 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
320 (otherwise
321 (coerce-coeff ring expr vars)))))))
322
323(defun poly-eval-scalar (expr
324 &optional
325 (ring +ring-of-integers+)
326 &aux
327 (order #'lex>))
328 "Evaluate a scalar expression EXPR in ring RING."
329 (declare (type ring ring))
330 (poly-lc (poly-eval expr nil ring order)))
331
332(defun spoly (ring-and-order f g
333 &aux
334 (ring (ro-ring ring-and-order)))
335 "It yields the S-polynomial of polynomials F and G."
336 (declare (type ring-and-order ring-and-order) (type poly f g))
337 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
338 (mf (monom-div lcm (poly-lm f)))
339 (mg (monom-div lcm (poly-lm g))))
340 (declare (type monom mf mg))
341 (multiple-value-bind (c cf cg)
342 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
343 (declare (ignore c))
344 (poly-sub
345 ring-and-order
346 (scalar-times-poly ring cg (monom-times-poly mf f))
347 (scalar-times-poly ring cf (monom-times-poly mg g))))))
348
349
350(defun poly-primitive-part (ring p)
351 "Divide polynomial P with integer coefficients by gcd of its
352coefficients and return the result."
353 (declare (type ring ring) (type poly p))
354 (if (poly-zerop p)
355 (values p 1)
356 (let ((c (poly-content ring p)))
357 (values (make-poly-from-termlist
358 (mapcar
359 #'(lambda (x)
360 (make-term :monom (term-monom x)
361 :coeff (funcall (ring-div ring) (term-coeff x) c)))
362 (poly-termlist p))
363 (poly-sugar p))
364 c))))
365
366(defun poly-content (ring p)
367 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
368to compute the greatest common divisor."
369 (declare (type ring ring) (type poly p))
370 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
371
372(defun read-infix-form (&key (stream t))
373 "Parser of infix expressions with integer/rational coefficients
374The parser will recognize two kinds of polynomial expressions:
375
376- polynomials in fully expanded forms with coefficients
377 written in front of symbolic expressions; constants can be optionally
378 enclosed in (); for example, the infix form
379 X^2-Y^2+(-4/3)*U^2*W^3-5
380 parses to
381 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
382
383- lists of polynomials; for example
384 [X-Y, X^2+3*Z]
385 parses to
386 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
387 where the first symbol [ marks a list of polynomials.
388
389-other infix expressions, for example
390 [(X-Y)*(X+Y)/Z,(X+1)^2]
391parses to:
392 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
393Currently this function is implemented using M. Kantrowitz's INFIX package."
394 (read-from-string
395 (concatenate 'string
396 "#I("
397 (with-output-to-string (s)
398 (loop
399 (multiple-value-bind (line eof)
400 (read-line stream t)
401 (format s "~A" line)
402 (when eof (return)))))
403 ")")))
404
405(defun read-poly (vars &key
406 (stream t)
407 (ring +ring-of-integers+)
408 (order #'lex>))
409 "Reads an expression in prefix form from a stream STREAM.
410The expression read from the strem should represent a polynomial or a
411list of polynomials in variables VARS, over the ring RING. The
412polynomial or list of polynomials is returned, with terms in each
413polynomial ordered according to monomial order ORDER."
414 (poly-eval (read-infix-form :stream stream) vars ring order))
415
416(defun string->poly (str vars
417 &optional
418 (ring +ring-of-integers+)
419 (order #'lex>))
420 "Converts a string STR to a polynomial in variables VARS."
421 (with-input-from-string (s str)
422 (read-poly vars :stream s :ring ring :order order)))
423
424(defun poly->alist (p)
425 "Convert a polynomial P to an association list. Thus, the format of the
426returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
427MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
428corresponding coefficient in the ring."
429 (cond
430 ((poly-p p)
431 (mapcar #'term->cons (poly-termlist p)))
432 ((and (consp p) (eq (car p) :[))
433 (cons :[ (mapcar #'poly->alist (cdr p))))))
434
435(defun string->alist (str vars
436 &optional
437 (ring +ring-of-integers+)
438 (order #'lex>))
439 "Convert a string STR representing a polynomial or polynomial list to
440an association list (... (MONOM . COEFF) ...)."
441 (poly->alist (string->poly str vars ring order)))
442
443(defun poly-equal-no-sugar-p (p q)
444 "Compare polynomials for equality, ignoring sugar."
445 (declare (type poly p q))
446 (equalp (poly-termlist p) (poly-termlist q)))
447
448(defun poly-set-equal-no-sugar-p (p q)
449 "Compare polynomial sets P and Q for equality, ignoring sugar."
450 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
451
452(defun poly-list-equal-no-sugar-p (p q)
453 "Compare polynomial lists P and Q for equality, ignoring sugar."
454 (every #'poly-equal-no-sugar-p p q))
455|#
Note: See TracBrowser for help on using the repository browser.