close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 98

Last change on this file since 98 was 77, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 9.4 KB
Line 
1;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22
23;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
24;;
25;; Polynomials
26;;
27;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
28
29(defstruct (poly
30 ;;
31 ;; BOA constructor, by default constructs zero polynomial
32 (:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist))))
33 (:constructor make-poly-zero (&aux (termlist nil) (sugar -1)))
34 ;; Constructor of polynomials representing a variable
35 (:constructor make-variable (ring nvars pos &optional (power 1)
36 &aux
37 (termlist (list
38 (make-term-variable ring nvars pos power)))
39 (sugar power)))
40 (:constructor poly-unit (ring dimension
41 &aux
42 (termlist (termlist-unit ring dimension))
43 (sugar 0))))
44 (termlist nil :type list)
45 (sugar -1 :type fixnum))
46
47;; Leading term
48(defmacro poly-lt (p) `(car (poly-termlist ,p)))
49
50;; Second term
51(defmacro poly-second-lt (p) `(cadar (poly-termlist ,p)))
52
53;; Leading monomial
54(defun poly-lm (p) (term-monom (poly-lt p)))
55
56;; Second monomial
57(defun poly-second-lm (p) (term-monom (poly-second-lt p)))
58
59;; Leading coefficient
60(defun poly-lc (p) (term-coeff (poly-lt p)))
61
62;; Second coefficient
63(defun poly-second-lc (p) (term-coeff (poly-second-lt p)))
64
65;; Testing for a zero polynomial
66(defun poly-zerop (p) (null (poly-termlist p)))
67
68;; The number of terms
69(defun poly-length (p) (length (poly-termlist p)))
70
71(defun scalar-times-poly (ring c p)
72 (make-poly-from-termlist (scalar-times-termlist ring c (poly-termlist p)) (poly-sugar p)))
73
74;; The scalar product omitting the head term
75(defun scalar-times-poly-1 (ring c p)
76 (make-poly-from-termlist (scalar-times-termlist ring c (cdr (poly-termlist p))) (poly-sugar p)))
77
78(defun monom-times-poly (m p)
79 (make-poly-from-termlist (monom-times-termlist m (poly-termlist p)) (+ (poly-sugar p) (monom-sugar m))))
80
81(defun term-times-poly (ring term p)
82 (make-poly-from-termlist (term-times-termlist ring term (poly-termlist p)) (+ (poly-sugar p) (term-sugar term))))
83
84(defun poly-add (ring p q)
85 (make-poly-from-termlist (termlist-add ring (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q))))
86
87(defun poly-sub (ring p q)
88 (make-poly-from-termlist (termlist-sub ring (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q))))
89
90(defun poly-uminus (ring p)
91 (make-poly-from-termlist (termlist-uminus ring (poly-termlist p)) (poly-sugar p)))
92
93(defun poly-mul (ring p q)
94 (make-poly-from-termlist (termlist-mul ring (poly-termlist p) (poly-termlist q)) (+ (poly-sugar p) (poly-sugar q))))
95
96(defun poly-expt (ring p n)
97 (make-poly-from-termlist (termlist-expt ring (poly-termlist p) n) (* n (poly-sugar p))))
98
99(defun poly-append (&rest plist)
100 (make-poly-from-termlist (apply #'append (mapcar #'poly-termlist plist))
101 (apply #'max (mapcar #'poly-sugar plist))))
102
103(defun poly-nreverse (p)
104 (setf (poly-termlist p) (nreverse (poly-termlist p)))
105 p)
106
107(defun poly-contract (p &optional (k 1))
108 (make-poly-from-termlist (termlist-contract (poly-termlist p) k)
109 (poly-sugar p)))
110
111(defun poly-extend (p &optional (m (make-monom 1 :initial-element 0)))
112 (make-poly-from-termlist
113 (termlist-extend (poly-termlist p) m)
114 (+ (poly-sugar p) (monom-sugar m))))
115
116(defun poly-add-variables (p k)
117 (setf (poly-termlist p) (termlist-add-variables (poly-termlist p) k))
118 p)
119
120(defun poly-list-add-variables (plist k)
121 (mapcar #'(lambda (p) (poly-add-variables p k)) plist))
122
123(defun poly-standard-extension (plist &aux (k (length plist)))
124 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
125 (declare (list plist) (fixnum k))
126 (labels ((incf-power (g i)
127 (dolist (x (poly-termlist g))
128 (incf (monom-elt (term-monom x) i)))
129 (incf (poly-sugar g))))
130 (setf plist (poly-list-add-variables plist k))
131 (dotimes (i k plist)
132 (incf-power (nth i plist) i))))
133
134(defun saturation-extension (ring f plist &aux (k (length plist)) (d (monom-dimension (poly-lm (car plist)))))
135 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
136 (setf f (poly-list-add-variables f k)
137 plist (mapcar #'(lambda (x)
138 (setf (poly-termlist x) (nconc (poly-termlist x)
139 (list (make-term (make-monom d :initial-element 0)
140 (funcall (ring-uminus ring) (funcall (ring-unit ring)))))))
141 x)
142 (poly-standard-extension plist)))
143 (append f plist))
144
145
146(defun polysaturation-extension (ring f plist &aux (k (length plist))
147 (d (+ k (length (poly-lm (car plist))))))
148 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]."
149 (setf f (poly-list-add-variables f k)
150 plist (apply #'poly-append (poly-standard-extension plist))
151 (cdr (last (poly-termlist plist))) (list (make-term (make-monom d :initial-element 0)
152 (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
153 (append f (list plist)))
154
155(defun saturation-extension-1 (ring f p) (polysaturation-extension ring f (list p)))
156
157
158
159;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
160;;
161;; Evaluation of polynomial (prefix) expressions
162;;
163;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
164
165(defun coerce-coeff (ring expr vars)
166 "Coerce an element of the coefficient ring to a constant polynomial."
167 ;; Modular arithmetic handler by rat
168 (make-poly-from-termlist (list (make-term (make-monom (length vars) :initial-element 0)
169 (funcall (ring-parse ring) expr)))
170 0))
171
172(defun poly-eval (ring expr vars &optional (list-marker '[))
173 (labels ((p-eval (arg) (poly-eval ring arg vars))
174 (p-eval-list (args) (mapcar #'p-eval args))
175 (p-add (x y) (poly-add ring x y)))
176 (cond
177 ((eql expr 0) (make-poly-zero))
178 ((member expr vars :test #'equalp)
179 (let ((pos (position expr vars :test #'equalp)))
180 (make-variable ring (length vars) pos)))
181 ((atom expr)
182 (coerce-coeff ring expr vars))
183 ((eq (car expr) list-marker)
184 (cons list-marker (p-eval-list (cdr expr))))
185 (t
186 (case (car expr)
187 (+ (reduce #'p-add (p-eval-list (cdr expr))))
188 (- (case (length expr)
189 (1 (make-poly-zero))
190 (2 (poly-uminus ring (p-eval (cadr expr))))
191 (3 (poly-sub ring (p-eval (cadr expr)) (p-eval (caddr expr))))
192 (otherwise (poly-sub ring (p-eval (cadr expr))
193 (reduce #'p-add (p-eval-list (cddr expr)))))))
194 (*
195 (if (endp (cddr expr)) ;unary
196 (p-eval (cdr expr))
197 (reduce #'(lambda (p q) (poly-mul ring p q)) (p-eval-list (cdr expr)))))
198 (expt
199 (cond
200 ((member (cadr expr) vars :test #'equalp)
201 ;;Special handling of (expt var pow)
202 (let ((pos (position (cadr expr) vars :test #'equalp)))
203 (make-variable ring (length vars) pos (caddr expr))))
204 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
205 ;; Negative power means division in coefficient ring
206 ;; Non-integer power means non-polynomial coefficient
207 (coerce-coeff ring expr vars))
208 (t (poly-expt ring (p-eval (cadr expr)) (caddr expr)))))
209 (otherwise
210 (coerce-coeff ring expr vars)))))))
211
212(defun spoly (ring f g)
213 "It yields the S-polynomial of polynomials F and G."
214 (declare (type poly f g))
215 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
216 (mf (monom-div lcm (poly-lm f)))
217 (mg (monom-div lcm (poly-lm g))))
218 (declare (type monom mf mg))
219 (multiple-value-bind (c cf cg)
220 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
221 (declare (ignore c))
222 (poly-sub
223 ring
224 (scalar-times-poly ring cg (monom-times-poly mf f))
225 (scalar-times-poly ring cf (monom-times-poly mg g))))))
226
227
228(defun poly-primitive-part (ring p)
229 "Divide polynomial P with integer coefficients by gcd of its
230coefficients and return the result."
231 (declare (type poly p))
232 (if (poly-zerop p)
233 (values p 1)
234 (let ((c (poly-content ring p)))
235 (values (make-poly-from-termlist (mapcar
236 #'(lambda (x)
237 (make-term (term-monom x)
238 (funcall (ring-div ring) (term-coeff x) c)))
239 (poly-termlist p))
240 (poly-sugar p))
241 c))))
242
243(defun poly-content (ring p)
244 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
245to compute the greatest common divisor."
246 (declare (type poly p))
247 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
248
Note: See TracBrowser for help on using the repository browser.