close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 74

Last change on this file since 74 was 58, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 8.2 KB
Line 
1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2;;
3;; Polynomials
4;;
5;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
6
7(defstruct (poly
8 ;;
9 ;; BOA constructor, by default constructs zero polynomial
10 (:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist))))
11 (:constructor make-poly-zero (&aux (termlist nil) (sugar -1)))
12 ;; Constructor of polynomials representing a variable
13 (:constructor make-variable (ring nvars pos &optional (power 1)
14 &aux
15 (termlist (list
16 (make-term-variable ring nvars pos power)))
17 (sugar power)))
18 (:constructor poly-unit (ring dimension
19 &aux
20 (termlist (termlist-unit ring dimension))
21 (sugar 0))))
22 (termlist nil :type list)
23 (sugar -1 :type fixnum))
24
25;; Leading term
26(defmacro poly-lt (p) `(car (poly-termlist ,p)))
27
28;; Second term
29(defmacro poly-second-lt (p) `(cadar (poly-termlist ,p)))
30
31;; Leading monomial
32(defun poly-lm (p) (term-monom (poly-lt p)))
33
34;; Second monomial
35(defun poly-second-lm (p) (term-monom (poly-second-lt p)))
36
37;; Leading coefficient
38(defun poly-lc (p) (term-coeff (poly-lt p)))
39
40;; Second coefficient
41(defun poly-second-lc (p) (term-coeff (poly-second-lt p)))
42
43;; Testing for a zero polynomial
44(defun poly-zerop (p) (null (poly-termlist p)))
45
46;; The number of terms
47(defun poly-length (p) (length (poly-termlist p)))
48
49(defun scalar-times-poly (ring c p)
50 (make-poly-from-termlist (scalar-times-termlist ring c (poly-termlist p)) (poly-sugar p)))
51
52;; The scalar product omitting the head term
53(defun scalar-times-poly-1 (ring c p)
54 (make-poly-from-termlist (scalar-times-termlist ring c (cdr (poly-termlist p))) (poly-sugar p)))
55
56(defun monom-times-poly (m p)
57 (make-poly-from-termlist (monom-times-termlist m (poly-termlist p)) (+ (poly-sugar p) (monom-sugar m))))
58
59(defun term-times-poly (ring term p)
60 (make-poly-from-termlist (term-times-termlist ring term (poly-termlist p)) (+ (poly-sugar p) (term-sugar term))))
61
62(defun poly-add (ring p q)
63 (make-poly-from-termlist (termlist-add ring (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q))))
64
65(defun poly-sub (ring p q)
66 (make-poly-from-termlist (termlist-sub ring (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q))))
67
68(defun poly-uminus (ring p)
69 (make-poly-from-termlist (termlist-uminus ring (poly-termlist p)) (poly-sugar p)))
70
71(defun poly-mul (ring p q)
72 (make-poly-from-termlist (termlist-mul ring (poly-termlist p) (poly-termlist q)) (+ (poly-sugar p) (poly-sugar q))))
73
74(defun poly-expt (ring p n)
75 (make-poly-from-termlist (termlist-expt ring (poly-termlist p) n) (* n (poly-sugar p))))
76
77(defun poly-append (&rest plist)
78 (make-poly-from-termlist (apply #'append (mapcar #'poly-termlist plist))
79 (apply #'max (mapcar #'poly-sugar plist))))
80
81(defun poly-nreverse (p)
82 (setf (poly-termlist p) (nreverse (poly-termlist p)))
83 p)
84
85(defun poly-contract (p &optional (k 1))
86 (make-poly-from-termlist (termlist-contract (poly-termlist p) k)
87 (poly-sugar p)))
88
89(defun poly-extend (p &optional (m (make-monom 1 :initial-element 0)))
90 (make-poly-from-termlist
91 (termlist-extend (poly-termlist p) m)
92 (+ (poly-sugar p) (monom-sugar m))))
93
94(defun poly-add-variables (p k)
95 (setf (poly-termlist p) (termlist-add-variables (poly-termlist p) k))
96 p)
97
98(defun poly-list-add-variables (plist k)
99 (mapcar #'(lambda (p) (poly-add-variables p k)) plist))
100
101(defun poly-standard-extension (plist &aux (k (length plist)))
102 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
103 (declare (list plist) (fixnum k))
104 (labels ((incf-power (g i)
105 (dolist (x (poly-termlist g))
106 (incf (monom-elt (term-monom x) i)))
107 (incf (poly-sugar g))))
108 (setf plist (poly-list-add-variables plist k))
109 (dotimes (i k plist)
110 (incf-power (nth i plist) i))))
111
112(defun saturation-extension (ring f plist &aux (k (length plist)) (d (monom-dimension (poly-lm (car plist)))))
113 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
114 (setf f (poly-list-add-variables f k)
115 plist (mapcar #'(lambda (x)
116 (setf (poly-termlist x) (nconc (poly-termlist x)
117 (list (make-term (make-monom d :initial-element 0)
118 (funcall (ring-uminus ring) (funcall (ring-unit ring)))))))
119 x)
120 (poly-standard-extension plist)))
121 (append f plist))
122
123
124(defun polysaturation-extension (ring f plist &aux (k (length plist))
125 (d (+ k (length (poly-lm (car plist))))))
126 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]."
127 (setf f (poly-list-add-variables f k)
128 plist (apply #'poly-append (poly-standard-extension plist))
129 (cdr (last (poly-termlist plist))) (list (make-term (make-monom d :initial-element 0)
130 (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
131 (append f (list plist)))
132
133(defun saturation-extension-1 (ring f p) (polysaturation-extension ring f (list p)))
134
135
136
137;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
138;;
139;; Evaluation of polynomial (prefix) expressions
140;;
141;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
142
143(defun coerce-coeff (ring expr vars)
144 "Coerce an element of the coefficient ring to a constant polynomial."
145 ;; Modular arithmetic handler by rat
146 (make-poly-from-termlist (list (make-term (make-monom (length vars) :initial-element 0)
147 (funcall (ring-parse ring) expr)))
148 0))
149
150(defun poly-eval (ring expr vars &optional (list-marker '[))
151 (labels ((p-eval (arg) (poly-eval ring arg vars))
152 (p-eval-list (args) (mapcar #'p-eval args))
153 (p-add (x y) (poly-add ring x y)))
154 (cond
155 ((eql expr 0) (make-poly-zero))
156 ((member expr vars :test #'equalp)
157 (let ((pos (position expr vars :test #'equalp)))
158 (make-variable ring (length vars) pos)))
159 ((atom expr)
160 (coerce-coeff ring expr vars))
161 ((eq (car expr) list-marker)
162 (cons list-marker (p-eval-list (cdr expr))))
163 (t
164 (case (car expr)
165 (+ (reduce #'p-add (p-eval-list (cdr expr))))
166 (- (case (length expr)
167 (1 (make-poly-zero))
168 (2 (poly-uminus ring (p-eval (cadr expr))))
169 (3 (poly-sub ring (p-eval (cadr expr)) (p-eval (caddr expr))))
170 (otherwise (poly-sub ring (p-eval (cadr expr))
171 (reduce #'p-add (p-eval-list (cddr expr)))))))
172 (*
173 (if (endp (cddr expr)) ;unary
174 (p-eval (cdr expr))
175 (reduce #'(lambda (p q) (poly-mul ring p q)) (p-eval-list (cdr expr)))))
176 (expt
177 (cond
178 ((member (cadr expr) vars :test #'equalp)
179 ;;Special handling of (expt var pow)
180 (let ((pos (position (cadr expr) vars :test #'equalp)))
181 (make-variable ring (length vars) pos (caddr expr))))
182 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
183 ;; Negative power means division in coefficient ring
184 ;; Non-integer power means non-polynomial coefficient
185 (coerce-coeff ring expr vars))
186 (t (poly-expt ring (p-eval (cadr expr)) (caddr expr)))))
187 (otherwise
188 (coerce-coeff ring expr vars)))))))
189
190(defun spoly (ring f g)
191 "It yields the S-polynomial of polynomials F and G."
192 (declare (type poly f g))
193 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
194 (mf (monom-div lcm (poly-lm f)))
195 (mg (monom-div lcm (poly-lm g))))
196 (declare (type monom mf mg))
197 (multiple-value-bind (c cf cg)
198 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
199 (declare (ignore c))
200 (poly-sub
201 ring
202 (scalar-times-poly ring cg (monom-times-poly mf f))
203 (scalar-times-poly ring cf (monom-times-poly mg g))))))
204
205
206(defun poly-primitive-part (ring p)
207 "Divide polynomial P with integer coefficients by gcd of its
208coefficients and return the result."
209 (declare (type poly p))
210 (if (poly-zerop p)
211 (values p 1)
212 (let ((c (poly-content ring p)))
213 (values (make-poly-from-termlist (mapcar
214 #'(lambda (x)
215 (make-term (term-monom x)
216 (funcall (ring-div ring) (term-coeff x) c)))
217 (poly-termlist p))
218 (poly-sugar p))
219 c))))
220
221(defun poly-content (ring p)
222 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
223to compute the greatest common divisor."
224 (declare (type poly p))
225 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
226
Note: See TracBrowser for help on using the repository browser.