1 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
2 | ;;
|
---|
3 | ;; Polynomials
|
---|
4 | ;;
|
---|
5 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
6 |
|
---|
7 | (defstruct (poly
|
---|
8 | ;;
|
---|
9 | ;; BOA constructor, by default constructs zero polynomial
|
---|
10 | (:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist))))
|
---|
11 | (:constructor make-poly-zero (&aux (termlist nil) (sugar -1)))
|
---|
12 | ;; Constructor of polynomials representing a variable
|
---|
13 | (:constructor make-variable (ring nvars pos &optional (power 1)
|
---|
14 | &aux
|
---|
15 | (termlist (list
|
---|
16 | (make-term-variable ring nvars pos power)))
|
---|
17 | (sugar power)))
|
---|
18 | (:constructor poly-unit (ring dimension
|
---|
19 | &aux
|
---|
20 | (termlist (termlist-unit ring dimension))
|
---|
21 | (sugar 0))))
|
---|
22 | (termlist nil :type list)
|
---|
23 | (sugar -1 :type fixnum))
|
---|
24 |
|
---|
25 | ;; Leading term
|
---|
26 | (defmacro poly-lt (p) `(car (poly-termlist ,p)))
|
---|
27 |
|
---|
28 | ;; Second term
|
---|
29 | (defmacro poly-second-lt (p) `(cadar (poly-termlist ,p)))
|
---|
30 |
|
---|
31 | ;; Leading monomial
|
---|
32 | (defun poly-lm (p) (term-monom (poly-lt p)))
|
---|
33 |
|
---|
34 | ;; Second monomial
|
---|
35 | (defun poly-second-lm (p) (term-monom (poly-second-lt p)))
|
---|
36 |
|
---|
37 | ;; Leading coefficient
|
---|
38 | (defun poly-lc (p) (term-coeff (poly-lt p)))
|
---|
39 |
|
---|
40 | ;; Second coefficient
|
---|
41 | (defun poly-second-lc (p) (term-coeff (poly-second-lt p)))
|
---|
42 |
|
---|
43 | ;; Testing for a zero polynomial
|
---|
44 | (defun poly-zerop (p) (null (poly-termlist p)))
|
---|
45 |
|
---|
46 | ;; The number of terms
|
---|
47 | (defun poly-length (p) (length (poly-termlist p)))
|
---|
48 |
|
---|
49 | (defun scalar-times-poly (ring c p)
|
---|
50 | (make-poly-from-termlist (scalar-times-termlist ring c (poly-termlist p)) (poly-sugar p)))
|
---|
51 |
|
---|
52 | ;; The scalar product omitting the head term
|
---|
53 | (defun scalar-times-poly-1 (ring c p)
|
---|
54 | (make-poly-from-termlist (scalar-times-termlist ring c (cdr (poly-termlist p))) (poly-sugar p)))
|
---|
55 |
|
---|
56 | (defun monom-times-poly (m p)
|
---|
57 | (make-poly-from-termlist (monom-times-termlist m (poly-termlist p)) (+ (poly-sugar p) (monom-sugar m))))
|
---|
58 |
|
---|
59 | (defun term-times-poly (ring term p)
|
---|
60 | (make-poly-from-termlist (term-times-termlist ring term (poly-termlist p)) (+ (poly-sugar p) (term-sugar term))))
|
---|
61 |
|
---|
62 | (defun poly-add (ring p q)
|
---|
63 | (make-poly-from-termlist (termlist-add ring (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q))))
|
---|
64 |
|
---|
65 | (defun poly-sub (ring p q)
|
---|
66 | (make-poly-from-termlist (termlist-sub ring (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q))))
|
---|
67 |
|
---|
68 | (defun poly-uminus (ring p)
|
---|
69 | (make-poly-from-termlist (termlist-uminus ring (poly-termlist p)) (poly-sugar p)))
|
---|
70 |
|
---|
71 | (defun poly-mul (ring p q)
|
---|
72 | (make-poly-from-termlist (termlist-mul ring (poly-termlist p) (poly-termlist q)) (+ (poly-sugar p) (poly-sugar q))))
|
---|
73 |
|
---|
74 | (defun poly-expt (ring p n)
|
---|
75 | (make-poly-from-termlist (termlist-expt ring (poly-termlist p) n) (* n (poly-sugar p))))
|
---|
76 |
|
---|
77 | (defun poly-append (&rest plist)
|
---|
78 | (make-poly-from-termlist (apply #'append (mapcar #'poly-termlist plist))
|
---|
79 | (apply #'max (mapcar #'poly-sugar plist))))
|
---|
80 |
|
---|
81 | (defun poly-nreverse (p)
|
---|
82 | (setf (poly-termlist p) (nreverse (poly-termlist p)))
|
---|
83 | p)
|
---|
84 |
|
---|
85 | (defun poly-contract (p &optional (k 1))
|
---|
86 | (make-poly-from-termlist (termlist-contract (poly-termlist p) k)
|
---|
87 | (poly-sugar p)))
|
---|
88 |
|
---|
89 | (defun poly-extend (p &optional (m (make-monom 1 :initial-element 0)))
|
---|
90 | (make-poly-from-termlist
|
---|
91 | (termlist-extend (poly-termlist p) m)
|
---|
92 | (+ (poly-sugar p) (monom-sugar m))))
|
---|
93 |
|
---|
94 | (defun poly-add-variables (p k)
|
---|
95 | (setf (poly-termlist p) (termlist-add-variables (poly-termlist p) k))
|
---|
96 | p)
|
---|
97 |
|
---|
98 | (defun poly-list-add-variables (plist k)
|
---|
99 | (mapcar #'(lambda (p) (poly-add-variables p k)) plist))
|
---|
100 |
|
---|
101 | (defun poly-standard-extension (plist &aux (k (length plist)))
|
---|
102 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
|
---|
103 | (declare (list plist) (fixnum k))
|
---|
104 | (labels ((incf-power (g i)
|
---|
105 | (dolist (x (poly-termlist g))
|
---|
106 | (incf (monom-elt (term-monom x) i)))
|
---|
107 | (incf (poly-sugar g))))
|
---|
108 | (setf plist (poly-list-add-variables plist k))
|
---|
109 | (dotimes (i k plist)
|
---|
110 | (incf-power (nth i plist) i))))
|
---|
111 |
|
---|
112 | (defun saturation-extension (ring f plist &aux (k (length plist)) (d (monom-dimension (poly-lm (car plist)))))
|
---|
113 | "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
|
---|
114 | (setf f (poly-list-add-variables f k)
|
---|
115 | plist (mapcar #'(lambda (x)
|
---|
116 | (setf (poly-termlist x) (nconc (poly-termlist x)
|
---|
117 | (list (make-term (make-monom d :initial-element 0)
|
---|
118 | (funcall (ring-uminus ring) (funcall (ring-unit ring)))))))
|
---|
119 | x)
|
---|
120 | (poly-standard-extension plist)))
|
---|
121 | (append f plist))
|
---|
122 |
|
---|
123 |
|
---|
124 | (defun polysaturation-extension (ring f plist &aux (k (length plist))
|
---|
125 | (d (+ k (length (poly-lm (car plist))))))
|
---|
126 | "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]."
|
---|
127 | (setf f (poly-list-add-variables f k)
|
---|
128 | plist (apply #'poly-append (poly-standard-extension plist))
|
---|
129 | (cdr (last (poly-termlist plist))) (list (make-term (make-monom d :initial-element 0)
|
---|
130 | (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
|
---|
131 | (append f (list plist)))
|
---|
132 |
|
---|
133 | (defun saturation-extension-1 (ring f p) (polysaturation-extension ring f (list p)))
|
---|
134 |
|
---|
135 | |
---|
136 |
|
---|
137 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
138 | ;;
|
---|
139 | ;; Evaluation of polynomial (prefix) expressions
|
---|
140 | ;;
|
---|
141 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
142 |
|
---|
143 | (defun coerce-coeff (ring expr vars)
|
---|
144 | "Coerce an element of the coefficient ring to a constant polynomial."
|
---|
145 | ;; Modular arithmetic handler by rat
|
---|
146 | (make-poly-from-termlist (list (make-term (make-monom (length vars) :initial-element 0)
|
---|
147 | (funcall (ring-parse ring) expr)))
|
---|
148 | 0))
|
---|
149 |
|
---|
150 | (defun poly-eval (ring expr vars &optional (list-marker '[))
|
---|
151 | (labels ((p-eval (arg) (poly-eval ring arg vars))
|
---|
152 | (p-eval-list (args) (mapcar #'p-eval args))
|
---|
153 | (p-add (x y) (poly-add ring x y)))
|
---|
154 | (cond
|
---|
155 | ((eql expr 0) (make-poly-zero))
|
---|
156 | ((member expr vars :test #'equalp)
|
---|
157 | (let ((pos (position expr vars :test #'equalp)))
|
---|
158 | (make-variable ring (length vars) pos)))
|
---|
159 | ((atom expr)
|
---|
160 | (coerce-coeff ring expr vars))
|
---|
161 | ((eq (car expr) list-marker)
|
---|
162 | (cons list-marker (p-eval-list (cdr expr))))
|
---|
163 | (t
|
---|
164 | (case (car expr)
|
---|
165 | (+ (reduce #'p-add (p-eval-list (cdr expr))))
|
---|
166 | (- (case (length expr)
|
---|
167 | (1 (make-poly-zero))
|
---|
168 | (2 (poly-uminus ring (p-eval (cadr expr))))
|
---|
169 | (3 (poly-sub ring (p-eval (cadr expr)) (p-eval (caddr expr))))
|
---|
170 | (otherwise (poly-sub ring (p-eval (cadr expr))
|
---|
171 | (reduce #'p-add (p-eval-list (cddr expr)))))))
|
---|
172 | (*
|
---|
173 | (if (endp (cddr expr)) ;unary
|
---|
174 | (p-eval (cdr expr))
|
---|
175 | (reduce #'(lambda (p q) (poly-mul ring p q)) (p-eval-list (cdr expr)))))
|
---|
176 | (expt
|
---|
177 | (cond
|
---|
178 | ((member (cadr expr) vars :test #'equalp)
|
---|
179 | ;;Special handling of (expt var pow)
|
---|
180 | (let ((pos (position (cadr expr) vars :test #'equalp)))
|
---|
181 | (make-variable ring (length vars) pos (caddr expr))))
|
---|
182 | ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
|
---|
183 | ;; Negative power means division in coefficient ring
|
---|
184 | ;; Non-integer power means non-polynomial coefficient
|
---|
185 | (coerce-coeff ring expr vars))
|
---|
186 | (t (poly-expt ring (p-eval (cadr expr)) (caddr expr)))))
|
---|
187 | (otherwise
|
---|
188 | (coerce-coeff ring expr vars)))))))
|
---|
189 |
|
---|
190 | (defun spoly (ring f g)
|
---|
191 | "It yields the S-polynomial of polynomials F and G."
|
---|
192 | (declare (type poly f g))
|
---|
193 | (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
|
---|
194 | (mf (monom-div lcm (poly-lm f)))
|
---|
195 | (mg (monom-div lcm (poly-lm g))))
|
---|
196 | (declare (type monom mf mg))
|
---|
197 | (multiple-value-bind (c cf cg)
|
---|
198 | (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
|
---|
199 | (declare (ignore c))
|
---|
200 | (poly-sub
|
---|
201 | ring
|
---|
202 | (scalar-times-poly ring cg (monom-times-poly mf f))
|
---|
203 | (scalar-times-poly ring cf (monom-times-poly mg g))))))
|
---|
204 |
|
---|
205 |
|
---|
206 | (defun poly-primitive-part (ring p)
|
---|
207 | "Divide polynomial P with integer coefficients by gcd of its
|
---|
208 | coefficients and return the result."
|
---|
209 | (declare (type poly p))
|
---|
210 | (if (poly-zerop p)
|
---|
211 | (values p 1)
|
---|
212 | (let ((c (poly-content ring p)))
|
---|
213 | (values (make-poly-from-termlist (mapcar
|
---|
214 | #'(lambda (x)
|
---|
215 | (make-term (term-monom x)
|
---|
216 | (funcall (ring-div ring) (term-coeff x) c)))
|
---|
217 | (poly-termlist p))
|
---|
218 | (poly-sugar p))
|
---|
219 | c))))
|
---|
220 |
|
---|
221 | (defun poly-content (ring p)
|
---|
222 | "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
|
---|
223 | to compute the greatest common divisor."
|
---|
224 | (declare (type poly p))
|
---|
225 | (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
|
---|
226 |
|
---|