close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 4528

Last change on this file since 4528 was 4521, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 24.8 KB
Line 
1;;----------------------------------------------------------------
2;;; -*- Mode: Lisp -*-
3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
4;;;
5;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
6;;;
7;;; This program is free software; you can redistribute it and/or modify
8;;; it under the terms of the GNU General Public License as published by
9;;; the Free Software Foundation; either version 2 of the License, or
10;;; (at your option) any later version.
11;;;
12;;; This program is distributed in the hope that it will be useful,
13;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15;;; GNU General Public License for more details.
16;;;
17;;; You should have received a copy of the GNU General Public License
18;;; along with this program; if not, write to the Free Software
19;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20;;;
21;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
22
23(defpackage "POLYNOMIAL"
24 (:use :cl :utils :monom :copy :ring)
25 (:export "POLY"
26 "POLY-DIMENSION"
27 "POLY-TERMLIST"
28 "POLY-TERM-ORDER"
29 "POLY-INSERT-TERM"
30 "POLY-REMOVE-TERM"
31 "SCALAR-MULTIPLY-BY"
32 "SCALAR-DIVIDE-BY"
33 "LEADING-TERM"
34 "LEADING-MONOMIAL"
35 "LEADING-COEFFICIENT"
36 "SECOND-LEADING-TERM"
37 "SECOND-LEADING-MONOMIAL"
38 "SECOND-LEADING-COEFFICIENT"
39 "ADD-TO"
40 "ADD"
41 "SUBTRACT-FROM"
42 "SUBTRACT"
43 "CHANGE-TERM-ORDER"
44 "STANDARD-EXTENSION"
45 "STANDARD-EXTENSION-1"
46 "STANDARD-SUM"
47 "SATURATION-EXTENSION"
48 "ALIST->POLY"
49 "POLY->ALIST"
50 "->INFIX"
51 "UNIVERSAL-EZGCD"
52 "S-POLYNOMIAL"
53 "POLY-CONTENT"
54 "POLY-PRIMITIVE-PART"
55 "SATURATION-EXTENSION-1"
56 "MAKE-POLY-VARIABLE"
57 "MAKE-POLY-CONSTANT"
58 "MAKE-ZERO-FOR"
59 "MAKE-UNIT-FOR"
60 "UNIVERSAL-EXPT"
61 "UNIVERSAL-EQUALP"
62 "UNIVERSAL-ZEROP"
63 "POLY-LENGTH"
64 "POLY-REVERSE"
65 "POLY-P"
66 "+LIST-MARKER+"
67 "POLY-EVAL"
68 "*COEFFICIENT-CLASS*")
69 (:documentation "Implements polynomials. A polynomial is essentially
70a mapping of monomials of the same degree to coefficients. The
71momomials are ordered according to a monomial order."))
72
73(in-package "POLYNOMIAL")
74
75(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
76
77(defclass poly (ring)
78 ((termlist :initform nil :initarg :termlist :accessor poly-termlist
79 :documentation "List of terms.")
80 (order :initform #'lex> :initarg :order :accessor poly-term-order
81 :documentation "Monomial/term order."))
82 (:default-initargs :termlist nil :order #'lex>)
83 (:documentation "A polynomial with a list of terms TERMLIST, ordered
84according to term order ORDER, which defaults to LEX>."))
85
86(defmethod print-object ((self poly) stream)
87 (print-unreadable-object (self stream :type t :identity t)
88 (with-accessors ((termlist poly-termlist)
89 (order poly-term-order))
90 self
91 (format stream "TERMLIST=~A ORDER=~A"
92 termlist order))))
93
94(defmethod copy-instance :around ((object poly) &rest initargs &key &allow-other-keys)
95 "Returns a deep copy of the polynomial POLY, by copying the TERMLIST and its terms."
96 (declare (ignore object initargs))
97 (let ((copy (call-next-method)))
98 (with-slots (termlist)
99 copy
100 (setf termlist (mapcar #'copy-instance termlist)))
101 copy))
102
103
104(defgeneric change-term-order (self other)
105 (:documentation "Change term order of SELF to the term order of OTHER.")
106 (:method ((self poly) (other poly))
107 (unless (eq (poly-term-order self) (poly-term-order other))
108 (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
109 (poly-term-order self) (poly-term-order other)))
110 self))
111
112(defgeneric poly-dimension (object)
113 (:documentation "The number of variables in the polynomial OBJECT")
114 (:method ((object poly))
115 (monom-dimension (leading-monomial object))))
116
117(defgeneric poly-insert-term (self term)
118 (:documentation "Insert a term TERM into SELF before all other
119terms. Order is not enforced.")
120 (:method ((self poly) (term term))
121 (with-slots (termlist)
122 self
123 (unless (endp termlist)
124 (assert (= (monom-dimension (car termlist)) (monom-dimension term)))))
125 (push term (poly-termlist self))
126 self))
127
128(defgeneric poly-remove-term (object)
129 (:documentation "Remove leading term of polynomial OBJECT. Returns the removed term.")
130 (:method ((object poly))
131 (pop (poly-termlist object))))
132
133(defgeneric poly-append-term (self term)
134 (:documentation "Append a term TERM to SELF after all other terms. Order is not enforced.")
135 (:method ((self poly) (term term))
136 (with-slots (termlist)
137 self
138 (unless (endp termlist)
139 (assert (= (monom-dimension (car termlist)) (monom-dimension term))))
140 (setf (cdr (last (poly-termlist self))) (list term)))
141 self))
142
143(defun alist->poly (alist &aux (poly (make-instance 'poly)))
144 "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...).
145It can be used to enter simple polynomials by hand, e.g the polynomial
146in two variables, X and Y, given in standard notation as:
147
148 3*X^2*Y^3+2*Y+7
149
150can be entered as
151(ALIST->POLY '(((0 0) . 7) ((0 1) . 2) ((2 3) . 3) )). NOTE: the
152terms are entered in the increasing order.
153
154NOTE: The primary use is for low-level debugging of the package."
155 (dolist (x alist poly)
156 (poly-insert-term poly (make-instance 'term :exponents (car x) :coeff (cdr x)))))
157
158(defun poly->alist (p)
159 "Convert a polynomial P to an association list. Thus, the format of the
160returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
161MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
162corresponding coefficient in the ring."
163 (cond
164 ((poly-p p)
165 (mapcar #'->list (poly-termlist p)))
166 ((and (consp p) (eq (car p) :[))
167 (cons :[ (mapcar #'poly->alist (cdr p))))))
168
169
170(defmethod update-instance-for-different-class :after ((old term) (new poly) &key)
171 "Converts OLD of class TERM to a NEW of class POLY, by making it into a 1-element TERMLIST."
172 (reinitialize-instance new :termlist (list old)))
173
174(defmethod update-instance-for-different-class :after ((old monom) (new poly) &key)
175 "Converts OLD of class MONOM to a NEW of class POLY, by making it into a 1-element TERMLIST."
176 (reinitialize-instance new :termlist (list (change-class old 'term))))
177
178(defmethod universal-equalp ((self poly) (other poly))
179 "Implements equality of polynomials."
180 (and
181 ;(eql (poly-dimension self) (poly-dimension other))
182 (every #'universal-equalp (poly-termlist self) (poly-termlist other))
183 (eq (poly-term-order self) (poly-term-order other))))
184
185(defgeneric leading-term (object)
186 (:method ((self poly))
187 (car (poly-termlist self)))
188 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
189
190(defgeneric second-leading-term (object)
191 (:method ((self poly))
192 (cadar (poly-termlist self)))
193 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
194
195(defgeneric leading-monomial (object)
196 (:method ((self poly))
197 (change-class (copy-instance (leading-term self)) 'monom))
198 (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
199
200(defgeneric second-leading-monomial (object)
201 (:method ((self poly))
202 (change-class (copy-instance (second-leading-term self)) 'monom))
203 (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
204
205(defgeneric leading-coefficient (object)
206 (:method ((self poly))
207 (term-coeff (leading-term self)))
208 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
209
210(defgeneric second-leading-coefficient (object)
211 (:method ((self poly))
212 (term-coeff (second-leading-term self)))
213 (:documentation "The second leading coefficient of a polynomial. It
214 signals error for a polynomial with at most one term."))
215
216(defmethod universal-zerop ((self poly))
217 "Return T iff SELF is a zero polynomial."
218 (null (poly-termlist self)))
219
220(defgeneric poly-length (self)
221 (:documentation "Return the number of terms.")
222 (:method ((self poly))
223 (length (poly-termlist self))))
224
225(defgeneric scalar-multiply-by (self other)
226 (:documentation "Multiply vector SELF by a scalar OTHER.")
227 (:method ((self poly) other)
228 (mapc #'(lambda (term) (setf (term-coeff term) (multiply-by (term-coeff term) other)))
229 (poly-termlist self))
230 self))
231
232(defgeneric scalar-divide-by (self other)
233 (:documentation "Divide vector SELF by a scalar OTHER.")
234 (:method ((self poly) other)
235 (mapc #'(lambda (term) (setf (term-coeff term) (divide-by (term-coeff term) other)))
236 (poly-termlist self))
237 self))
238
239(defmethod unary-inverse :before ((self poly))
240 "Checks invertibility of a polynomial SELF. To be invertable, the
241polynomial must be an invertible, constant polynomial."
242 (with-slots (termlist)
243 self
244 (assert (and (= (length termlist) 1) (zerop (total-degree (car termlist))))
245 nil
246 "To be invertible, the polynomial must have 1 term of total degree 0.")))
247
248(defmethod unary-inverse ((self poly))
249 "Returns the unary inverse of a polynomial SELF."
250 (with-slots (termlist)
251 self
252 (setf (car termlist) (unary-inverse (car termlist)))
253 self))
254
255(defmethod multiply-by ((self poly) (other monom))
256 "Multiply a polynomial SELF by OTHER."
257 (mapc #'(lambda (term) (multiply-by term other))
258 (poly-termlist self))
259 self)
260
261(defmethod multiply-by ((self poly) (other term))
262 "Multiply a polynomial SELF by OTHER."
263 (mapc #'(lambda (term) (multiply-by term other))
264 (poly-termlist self))
265 self)
266
267#|
268(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
269 "Return an expression which will efficiently adds/subtracts two
270polynomials, P and Q. The addition/subtraction of coefficients is
271performed by calling ADD/SUBTRACT-FN. If UMINUS-FN is supplied, it is
272used to negate the coefficients of Q which do not have a corresponding
273coefficient in P. The code implements an efficient algorithm to add
274two polynomials represented as sorted lists of terms. The code
275destroys both arguments, reusing the terms to build the result."
276 `(macrolet ((lc (x) `(term-coeff (car ,x))))
277 (do ((p ,p)
278 (q ,q)
279 r)
280 ((or (endp p) (endp q))
281 ;; NOTE: R contains the result in reverse order. Can it
282 ;; be more efficient to produce the terms in correct order?
283 (unless (endp q)
284 ;; Upon subtraction, we must change the sign of
285 ;; all coefficients in q
286 ,@(when uminus-fn
287 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
288 (setf r (nreconc r q)))
289 (unless (endp p)
290 (setf r (nreconc r p)))
291 r)
292 (multiple-value-bind
293 (greater-p equal-p)
294 (funcall ,order-fn (car p) (car q))
295 (cond
296 (greater-p
297 (rotatef (cdr p) r p)
298 )
299 (equal-p
300 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
301 (cond
302 ((universal-zerop s)
303 (setf p (cdr p))
304 )
305 (t
306 (setf (lc p) s)
307 (rotatef (cdr p) r p))))
308 (setf q (cdr q))
309 )
310 (t
311 ;;Negate the term of Q if UMINUS provided, signallig
312 ;;that we are doing subtraction
313 ,(when uminus-fn
314 `(setf (lc q) (funcall ,uminus-fn (lc q))))
315 (rotatef (cdr q) r q))))
316 ;;(format t "P:~A~%" p)
317 ;;(format t "Q:~A~%" q)
318 ;;(format t "R:~A~%" r)
319 )))
320|#
321
322;; Shorthand for leading coefficient of a termlist
323(defmacro lc (x) `(term-coeff (car ,x)))
324
325(defun slow-add (p q order-fn add-fn)
326 (cond
327 ((endp p) q)
328 ((endp q) p)
329 (t
330 (multiple-value-bind
331 (greater-p equal-p)
332 (funcall order-fn (car p) (car q))
333 (cond
334 (greater-p ; (> (car p) (car q))
335 (cons (car p) (slow-add (cdr p) q order-fn add-fn))
336 )
337 (equal-p ; (= (car p)) (car q))
338 (let ((s (funcall add-fn (lc p) (lc q))))
339 (cond
340 ((universal-zerop s)
341 (slow-add (cdr p) (cdr q) order-fn add-fn))
342 (t
343 ;; Adjust the lc of p
344 (setf (lc p) s)
345 (cons (car p) (slow-add (cdr p) (cdr q) order-fn add-fn))
346 ))))
347 (t ;(< (car p) (car q))
348 (cons (car q) (slow-add p (cdr q) order-fn add-fn))
349 ))))))
350
351
352(defun fast-and-risky-add (p q order-fn add-fn &aux result result-last)
353 (when (and p q (eq p q)) (warn "FAST-AND-RISKY-ADD: ~S is EQ to ~S" p q))
354 (flet ((add-to-result (x)
355 (assert (consp x))
356 (setf (cdr x) nil)
357 (if (endp result)
358 (setf result x
359 result-last x)
360 (setf (cdr result-last) x
361 result-last (cdr result-last)))))
362 (loop
363 (cond
364 ((endp p) (unless (endp q) (add-to-result q)) (return result))
365 ((endp q) (unless (endp p) (add-to-result p)) (return result))
366 (t
367 (multiple-value-bind
368 (greater-p equal-p)
369 (funcall order-fn (car p) (car q))
370 (cond
371 (greater-p ; (> (car p) (car q))
372 (let ((tmp (cdr p)))
373 (add-to-result p)
374 (setf p tmp)))
375 (equal-p ; (= (car p)) (car q))
376 (let ((s (funcall add-fn (lc p) (lc q))))
377 (cond
378 ((universal-zerop s)
379 ;; Terms cancel, discard both
380 (setf p (cdr p)
381 q (cdr q)))
382 (t
383 ;; Terms do not cancel, store the
384 ;; sum of coefficients in (lc p)
385 (setf (lc p) s)
386 (let ((tmp (cdr p)))
387 (add-to-result p)
388 (setf p tmp
389 q (cdr q)))))))
390 (t ;(< (car p) (car q))
391 (let ((tmp (cdr q)))
392 (add-to-result q)
393 (setf q tmp))
394 ))))))))
395
396(defun fast-add (p q order-fn add-fn)
397 "This version calls SLOW-ADD and is bullet-proof."
398 (slow-add p q order-fn add-fn)
399 ;;(fast-and-risky-add p q order-fn add-fn)
400 ;;(f-add p q order-fn add-fn)
401 ;;(s-add p q order-fn add-fn)
402 )
403
404#|
405;; NOTE: The stuff below works, but may not be worth the trouble.
406
407(defmacro def-add/subtract-method (add/subtract-method-name
408 uminus-method-name
409 &optional
410 (doc-string nil doc-string-supplied-p))
411 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
412 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
413 ,@(when doc-string-supplied-p `(,doc-string))
414 ;; Ensure orders are compatible
415 (change-term-order other self)
416 (setf (poly-termlist self) (fast-add/subtract
417 (poly-termlist self) (poly-termlist other)
418 (poly-term-order self)
419 #',add/subtract-method-name
420 ,(when uminus-method-name `(function ,uminus-method-name))))
421 self))
422
423(eval-when (:load-toplevel :execute)
424
425 (def-add/subtract-method add-to nil
426 "Adds to polynomial SELF another polynomial OTHER.
427This operation destructively modifies both polynomials.
428The result is stored in SELF. This implementation does
429no consing, entirely reusing the sells of SELF and OTHER.")
430
431 (def-add/subtract-method subtract-from unary-minus
432 "Subtracts from polynomial SELF another polynomial OTHER.
433This operation destructively modifies both polynomials.
434The result is stored in SELF. This implementation does
435no consing, entirely reusing the sells of SELF and OTHER.")
436 )
437
438|#
439
440(defmethod unary-minus ((self poly))
441 "Destructively modifies the coefficients of the polynomial SELF,
442by changing their sign."
443 (mapc #'unary-minus (poly-termlist self))
444 self)
445
446(defun add-termlists (p q order-fn)
447 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
448 (fast-add p q order-fn #'add-to))
449
450(defun subtract-termlists (p q order-fn)
451 "Destructively subtracts two termlists P and Q ordered according to ORDER-FN."
452 (setf q (mapc #'unary-minus q))
453 (add-termlists p q order-fn))
454
455(defmethod add-to ((self poly) (other poly))
456 "Adds to polynomial SELF another polynomial OTHER.
457This operation destructively modifies both polynomials.
458The result is stored in SELF. This implementation does
459no consing, entirely reusing the sells of SELF and OTHER."
460 (change-term-order other self)
461 (setf (poly-termlist self) (add-termlists
462 (poly-termlist self) (poly-termlist other)
463 (poly-term-order self)))
464 self)
465
466
467(defmethod subtract-from ((self poly) (other poly))
468 "Subtracts from polynomial SELF another polynomial OTHER.
469This operation destructively modifies both polynomials.
470The result is stored in SELF. This implementation does
471no consing, entirely reusing the sells of SELF and OTHER."
472 (change-term-order other self)
473 (setf (poly-termlist self) (subtract-termlists
474 (poly-termlist self) (poly-termlist other)
475 (poly-term-order self)))
476 self)
477
478
479(defmethod add-to ((self poly) (other term))
480 "Adds to a polynomial SELF a term OTHER. The term OTHER is not
481modified."
482 (add-to self (change-class other 'poly)))
483
484(defmethod subtract-from ((self poly) (other term))
485 "Subtracts from a polynomial SELF a term OTHER. The term OTHER is not
486modified."
487 (subtract-from self (change-class other 'poly)))
488
489
490(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
491 &optional (reverse-arg-order-P nil))
492 "Multiplies term TERM by a list of term, TERMLIST.
493Takes into accound divisors of zero in the ring, by
494deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
495is T, change the order of arguments; this may be important
496if we extend the package to non-commutative rings."
497 `(mapcan #'(lambda (other-term)
498 (let ((prod (multiply
499 ,@(cond
500 (reverse-arg-order-p
501 `(other-term ,term))
502 (t
503 `(,term other-term))))))
504 (cond
505 ((universal-zerop prod) nil)
506 (t (list prod)))))
507 ,termlist))
508
509(defun multiply-termlists (p q order-fn)
510 "A version of polynomial multiplication, operating
511directly on termlists."
512 (cond
513 ((or (endp p) (endp q))
514 ;;p or q is 0 (represented by NIL)
515 nil)
516 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
517 ((endp (cdr p))
518 (multiply-term-by-termlist-dropping-zeros (car p) q))
519 ((endp (cdr q))
520 (multiply-term-by-termlist-dropping-zeros (car q) p t))
521 (t
522 (cons (multiply (car p) (car q))
523 (add-termlists
524 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
525 (multiply-termlists (cdr p) q order-fn)
526 order-fn)))))
527
528(defmethod multiply-by ((self poly) (other poly) &aux (other-copy (copy-instance other)))
529 (change-term-order other-copy self)
530 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
531 (poly-termlist other-copy)
532 (poly-term-order self)))
533 self)
534
535(defmethod left-tensor-product-by ((self poly) (other monom))
536 (setf (poly-termlist self)
537 (mapcan #'(lambda (term)
538 (let ((prod (left-tensor-product-by term other)))
539 (cond
540 ((universal-zerop prod) nil)
541 (t (list prod)))))
542 (poly-termlist self)))
543 self)
544
545(defmethod right-tensor-product-by ((self poly) (other monom))
546 (setf (poly-termlist self)
547 (mapcan #'(lambda (term)
548 (let ((prod (right-tensor-product-by term other)))
549 (cond
550 ((universal-zerop prod) nil)
551 (t (list prod)))))
552 (poly-termlist self)))
553 self)
554
555
556(defun standard-extension (plist &aux (k (length plist)) (i 0))
557 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
558is a list of polynomials. Destructively modifies PLIST elements."
559 (mapc #'(lambda (poly)
560 (left-tensor-product-by
561 poly
562 (prog1
563 (make-monom-variable k i)
564 (incf i))))
565 plist))
566
567(defun standard-extension-1 (plist
568 &aux
569 (plist (standard-extension plist))
570 (nvars (poly-dimension (car plist))))
571 "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
572Firstly, new K variables U1, U2, ..., UK, are inserted into each
573polynomial. Subsequently, P1, P2, ..., PK are destructively modified
574tantamount to replacing PI with UI*PI-1. It assumes that all
575polynomials have the same dimension, and only the first polynomial
576is examined to determine this dimension."
577 ;; Implementation note: we use STANDARD-EXTENSION and then subtract
578 ;; 1 from each polynomial; since UI*PI has no constant term,
579 ;; we just need to append the constant term at the end
580 ;; of each termlist.
581 (flet ((subtract-1 (p)
582 (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
583 (setf plist (mapc #'subtract-1 plist)))
584 plist)
585
586
587(defun standard-sum (plist
588 &aux
589 (plist (standard-extension plist))
590 (nvars (poly-dimension (car plist))))
591 "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
592Firstly, new K variables, U1, U2, ..., UK, are inserted into each
593polynomial. Subsequently, P1, P2, ..., PK are destructively modified
594tantamount to replacing PI with UI*PI, and the resulting polynomials
595are added. Finally, 1 is subtracted. It should be noted that the term
596order is not modified, which is equivalent to using a lexicographic
597order on the first K variables."
598 (flet ((subtract-1 (p)
599 (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
600 (subtract-1
601 (make-instance
602 'poly
603 :termlist (apply #'nconc (mapcar #'poly-termlist plist))))))
604
605(defgeneric s-polynomial (object1 object2)
606 (:documentation "Yields the S-polynomial of OBJECT1 and OBJECT2.")
607 (:method ((f poly) (g poly))
608 (let* ((lcm (universal-lcm (leading-monomial f) (leading-monomial g)))
609 (mf (divide lcm (leading-monomial f)))
610 (mg (divide lcm (leading-monomial g))))
611 (multiple-value-bind (c cf cg)
612 (universal-ezgcd (leading-coefficient f) (leading-coefficient g))
613 (declare (ignore c))
614 (subtract
615 (multiply f mf cg)
616 (multiply g mg cf))))))
617
618(defgeneric poly-content (object)
619 (:documentation "Greatest common divisor of the coefficients of the polynomial object OBJECT.")
620 (:method ((self poly))
621 (reduce #'universal-gcd
622 (mapcar #'term-coeff (rest (poly-termlist self)))
623 :initial-value (leading-coefficient self))))
624
625(defun poly-primitive-part (self)
626 "Divide polynomial SELF by gcd of its
627coefficients. Return the resulting polynomial."
628 (scalar-divide-by self (poly-content self)))
629
630(defun poly-insert-variables (self k)
631 (left-tensor-product-by self (make-instance 'monom :dimension k)))
632
633(defun saturation-extension (f plist &aux (k (length plist)))
634 "Calculate [F', U1*P1-1,U2*P2-1,...,UK*PK-1], where
635PLIST=[P1,P2,...,PK] and F' is F with variables U1,U2,...,UK inserted
636as first K variables. It destructively modifies F and PLIST."
637 (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
638 (standard-extension-1 plist)))
639
640(defun polysaturation-extension (f plist &aux (k (length plist)))
641 "Calculate [F', U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]
642and F' is F with variables U1,U2,...,UK inserted as first K
643variables. It destructively modifies F and PLIST."
644 (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
645 (list (standard-sum plist))))
646
647(defun saturation-extension-1 (f p)
648 "Given family of polynomials F and a polynomial P, calculate [F',
649U*P-1], where F' is F with variable inserted as the first variable. It
650destructively modifies F and P."
651 (polysaturation-extension f (list p)))
652
653(defmethod multiply-by ((self poly) (other ring))
654 (scalar-multiply-by self other))
655
656(defun make-poly-variable (nvars pos &optional (power 1))
657 (change-class (make-monom-variable nvars pos power) 'poly))
658
659(defun make-poly-constant (nvars coeff)
660 (change-class (make-term-constant nvars coeff) 'poly))
661
662(defgeneric universal-expt (x y)
663 (:documentation "Raises X to power Y.")
664 (:method ((x number) (y integer)) (expt x y))
665 (:method ((x t) (y integer))
666 (declare (type fixnum y))
667 (cond
668 ((minusp y) (error "universal-expt: Negative exponent."))
669 ((universal-zerop x) (if (zerop y) 1))
670 (t
671 (do ((k 1 (ash k 1))
672 (q x (multiply q q)) ;keep squaring
673 (p (make-unit-for x) (if (not (zerop (logand k y))) (multiply p q) p)))
674 ((> k y) p)
675 (declare (fixnum k)))))))
676
677(defgeneric poly-p (object)
678 (:documentation "Checks if an object is a polynomial.")
679 (:method ((self poly)) t)
680 (:method ((self t)) nil))
681
682(defmethod ->sexp :before ((self poly) &optional vars)
683 "Ensures that the number of variables in VARS maches the polynomial dimension of the
684polynomial SELF."
685 (unless (endp (poly-termlist self))
686 (let ((dimension (poly-dimension self)))
687 (assert (= (length vars) dimension)
688 nil
689 "Number of variables ~S does not match the dimension ~S"
690 vars dimension))))
691
692(defmethod ->sexp ((self poly) &optional vars)
693 "Converts a polynomial SELF to a sexp."
694 (let ((m (mapcar #'(lambda (trm) (->sexp trm vars))
695 (poly-termlist self))))
696 (cond ((endp m) 0)
697 ((endp (cdr m)) (car m))
698 (t (cons '+ m)))))
699
700(defconstant +list-marker+ :[
701 "A sexp with this head is considered a list of polynomials.")
702
703(defmethod ->sexp ((self cons) &optional vars)
704 (assert (eql (car self) +list-marker+))
705 (cons +list-marker+ (mapcar #'(lambda (p) (->sexp p vars)) (cdr self))))
706
707(defmethod make-zero-for ((self poly))
708 (make-instance 'poly))
709
710(defmethod make-unit-for ((self poly))
711 (make-poly-constant (poly-dimension self) 1))
712
713(defgeneric poly-reverse (self)
714 (:documentation "Reverse the order of terms in a polynomial SELF.")
715 (:method ((self poly))
716 (with-slots (termlist)
717 self
718 (setf termlist (nreverse termlist)))
719 self))
720
721
722
Note: See TracBrowser for help on using the repository browser.