close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 4492

Last change on this file since 4492 was 4492, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 26.2 KB
Line 
1;;----------------------------------------------------------------
2;;; -*- Mode: Lisp -*-
3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
4;;;
5;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
6;;;
7;;; This program is free software; you can redistribute it and/or modify
8;;; it under the terms of the GNU General Public License as published by
9;;; the Free Software Foundation; either version 2 of the License, or
10;;; (at your option) any later version.
11;;;
12;;; This program is distributed in the hope that it will be useful,
13;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15;;; GNU General Public License for more details.
16;;;
17;;; You should have received a copy of the GNU General Public License
18;;; along with this program; if not, write to the Free Software
19;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20;;;
21;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
22
23(defpackage "POLYNOMIAL"
24 (:use :cl :utils :monom :copy :ring)
25 (:export "POLY"
26 "POLY-DIMENSION"
27 "POLY-TERMLIST"
28 "POLY-TERM-ORDER"
29 "POLY-INSERT-TERM"
30 "POLY-REMOVE-TERM"
31 "SCALAR-MULTIPLY-BY"
32 "SCALAR-DIVIDE-BY"
33 "LEADING-TERM"
34 "LEADING-MONOMIAL"
35 "LEADING-COEFFICIENT"
36 "SECOND-LEADING-TERM"
37 "SECOND-LEADING-MONOMIAL"
38 "SECOND-LEADING-COEFFICIENT"
39 "ADD-TO"
40 "ADD"
41 "SUBTRACT-FROM"
42 "SUBTRACT"
43 "CHANGE-TERM-ORDER"
44 "STANDARD-EXTENSION"
45 "STANDARD-EXTENSION-1"
46 "STANDARD-SUM"
47 "SATURATION-EXTENSION"
48 "ALIST->POLY"
49 "POLY->ALIST"
50 "->INFIX"
51 "UNIVERSAL-EZGCD"
52 "S-POLYNOMIAL"
53 "POLY-CONTENT"
54 "POLY-PRIMITIVE-PART"
55 "SATURATION-EXTENSION-1"
56 "MAKE-POLY-VARIABLE"
57 "MAKE-POLY-CONSTANT"
58 "MAKE-ZERO-FOR"
59 "MAKE-UNIT-FOR"
60 "UNIVERSAL-EXPT"
61 "UNIVERSAL-EQUALP"
62 "UNIVERSAL-ZEROP"
63 "POLY-LENGTH"
64 "POLY-REVERSE"
65 "POLY-P"
66 "+LIST-MARKER+"
67 "POLY-EVAL"
68 "*COEFFICIENT-CLASS*")
69 (:documentation "Implements polynomials. A polynomial is essentially
70a mapping of monomials of the same degree to coefficients. The
71momomials are ordered according to a monomial order."))
72
73(in-package :polynomial)
74
75(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
76
77(defclass poly (ring)
78 ((termlist :initform nil :initarg :termlist :accessor poly-termlist
79 :documentation "List of terms.")
80 (order :initform #'lex> :initarg :order :accessor poly-term-order
81 :documentation "Monomial/term order."))
82 (:default-initargs :termlist nil :order #'lex>)
83 (:documentation "A polynomial with a list of terms TERMLIST, ordered
84according to term order ORDER, which defaults to LEX>."))
85
86(defmethod print-object ((self poly) stream)
87 (print-unreadable-object (self stream :type t :identity t)
88 (with-accessors ((termlist poly-termlist)
89 (order poly-term-order))
90 self
91 (format stream "TERMLIST=~A ORDER=~A"
92 termlist order))))
93
94(defmethod copy-instance :around ((object poly) &rest initargs &key &allow-other-keys)
95 "Returns a deep copy of the polynomial POLY, by copying the TERMLIST and its terms."
96 (declare (ignore object initargs))
97 (let ((copy (call-next-method)))
98 (with-slots (termlist)
99 copy
100 (setf termlist (mapcar #'copy-instance termlist)))
101 copy))
102
103
104(defgeneric change-term-order (self other)
105 (:documentation "Change term order of SELF to the term order of OTHER.")
106 (:method ((self poly) (other poly))
107 (unless (eq (poly-term-order self) (poly-term-order other))
108 (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
109 (poly-term-order self) (poly-term-order other)))
110 self))
111
112(defgeneric poly-dimension (object)
113 (:documentation "The number of variables in the polynomial OBJECT")
114 (:method ((object poly))
115 (monom-dimension (leading-monomial object))))
116
117(defgeneric poly-insert-term (self term)
118 (:documentation "Insert a term TERM into SELF before all other
119terms. Order is not enforced.")
120 (:method ((self poly) (term term))
121 (with-slots (termlist)
122 self
123 (unless (endp termlist)
124 (assert (= (monom-dimension (car termlist)) (monom-dimension term)))))
125 (push term (poly-termlist self))
126 self))
127
128(defgeneric poly-remove-term (object)
129 (:documentation "Remove leading term of polynomial OBJECT. Returns the removed term.")
130 (:method ((object poly))
131 (pop (poly-termlist object))))
132
133(defgeneric poly-append-term (self term)
134 (:documentation "Append a term TERM to SELF after all other terms. Order is not enforced.")
135 (:method ((self poly) (term term))
136 (with-slots (termlist)
137 self
138 (unless (endp termlist)
139 (assert (= (monom-dimension (car termlist)) (monom-dimension term))))
140 (setf (cdr (last (poly-termlist self))) (list term)))
141 self))
142
143(defun alist->poly (alist &aux (poly (make-instance 'poly)))
144 "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...).
145It can be used to enter simple polynomials by hand, e.g the polynomial
146in two variables, X and Y, given in standard notation as:
147
148 3*X^2*Y^3+2*Y+7
149
150can be entered as
151(ALIST->POLY '(((0 0) . 7) ((0 1) . 2) ((2 3) . 3) )). NOTE: the
152terms are entered in the increasing order.
153
154NOTE: The primary use is for low-level debugging of the package."
155 (dolist (x alist poly)
156 (poly-insert-term poly (make-instance 'term :exponents (car x) :coeff (cdr x)))))
157
158(defun poly->alist (p)
159 "Convert a polynomial P to an association list. Thus, the format of the
160returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
161MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
162corresponding coefficient in the ring."
163 (cond
164 ((poly-p p)
165 (mapcar #'->list (poly-termlist p)))
166 ((and (consp p) (eq (car p) :[))
167 (cons :[ (mapcar #'poly->alist (cdr p))))))
168
169
170#+nil
171(defmethod shared-initialize :after ((self poly) slot-names
172 &rest initargs
173 &key)
174 "If TERMLIST is supplied and non-empty, and DIMENSION is NIL, set
175the dimension to the dimension of the first term in TERMLIST."
176 (declare (ignore initargs))
177 (let ((dims (mapcar #'monom-dimension (slot-value self 'termlist))))
178 (format t "Dimensions: ~A~%" dims)
179 (assert (apply #'= dims))
180 (unless (endp dims)
181 (setf (slot-value self 'dimension) (car dims))))
182 self)
183
184(defmethod update-instance-for-different-class :after ((old term) (new poly) &key)
185 "Converts OLD of class TERM to a NEW of class POLY, by making it into a 1-element TERMLIST."
186 (reinitialize-instance new :termlist (list old)))
187
188(defmethod update-instance-for-different-class :after ((old monom) (new poly) &key)
189 "Converts OLD of class MONOM to a NEW of class POLY, by making it into a 1-element TERMLIST."
190 (reinitialize-instance new :termlist (list (change-class old 'term))))
191
192(defmethod universal-equalp ((self poly) (other poly))
193 "Implements equality of polynomials."
194 (and
195 ;(eql (poly-dimension self) (poly-dimension other))
196 (every #'universal-equalp (poly-termlist self) (poly-termlist other))
197 (eq (poly-term-order self) (poly-term-order other))))
198
199(defgeneric leading-term (object)
200 (:method ((self poly))
201 (car (poly-termlist self)))
202 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
203
204(defgeneric second-leading-term (object)
205 (:method ((self poly))
206 (cadar (poly-termlist self)))
207 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
208
209(defgeneric leading-monomial (object)
210 (:method ((self poly))
211 (change-class (copy-instance (leading-term self)) 'monom))
212 (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
213
214(defgeneric second-leading-monomial (object)
215 (:method ((self poly))
216 (change-class (copy-instance (second-leading-term self)) 'monom))
217 (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
218
219(defgeneric leading-coefficient (object)
220 (:method ((self poly))
221 (term-coeff (leading-term self)))
222 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
223
224(defgeneric second-leading-coefficient (object)
225 (:method ((self poly))
226 (term-coeff (second-leading-term self)))
227 (:documentation "The second leading coefficient of a polynomial. It
228 signals error for a polynomial with at most one term."))
229
230(defmethod universal-zerop ((self poly))
231 "Return T iff SELF is a zero polynomial."
232 (null (poly-termlist self)))
233
234(defgeneric poly-length (self)
235 (:documentation "Return the number of terms.")
236 (:method ((self poly))
237 (length (poly-termlist self))))
238
239(defgeneric scalar-multiply-by (self other)
240 (:documentation "Multiply vector SELF by a scalar OTHER.")
241 (:method ((self poly) other)
242 (mapc #'(lambda (term) (setf (term-coeff term) (multiply-by (term-coeff term) other)))
243 (poly-termlist self))
244 self))
245
246(defgeneric scalar-divide-by (self other)
247 (:documentation "Divide vector SELF by a scalar OTHER.")
248 (:method ((self poly) other)
249 (mapc #'(lambda (term) (setf (term-coeff term) (divide-by (term-coeff term) other)))
250 (poly-termlist self))
251 self))
252
253(defmethod unary-inverse :before ((self poly))
254 "Checks invertibility of a polynomial SELF. To be invertable, the
255polynomial must be an invertible, constant polynomial."
256 (with-slots (termlist)
257 self
258 (assert (and (= (length termlist) 1) (zerop (total-degree (car termlist))))
259 nil
260 "To be invertible, the polynomial must have 1 term of total degree 0.")))
261
262(defmethod unary-inverse ((self poly))
263 "Returns the unary inverse of a polynomial SELF."
264 (with-slots (termlist)
265 self
266 (setf (car termlist) (unary-inverse (car termlist)))
267 self))
268
269(defmethod multiply-by ((self poly) (other monom))
270 "Multiply a polynomial SELF by OTHER."
271 (mapc #'(lambda (term) (multiply-by term other))
272 (poly-termlist self))
273 self)
274
275(defmethod multiply-by ((self poly) (other term))
276 "Multiply a polynomial SELF by OTHER."
277 (mapc #'(lambda (term) (multiply-by term other))
278 (poly-termlist self))
279 self)
280
281#|
282(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
283 "Return an expression which will efficiently adds/subtracts two
284polynomials, P and Q. The addition/subtraction of coefficients is
285performed by calling ADD/SUBTRACT-FN. If UMINUS-FN is supplied, it is
286used to negate the coefficients of Q which do not have a corresponding
287coefficient in P. The code implements an efficient algorithm to add
288two polynomials represented as sorted lists of terms. The code
289destroys both arguments, reusing the terms to build the result."
290 `(macrolet ((lc (x) `(term-coeff (car ,x))))
291 (do ((p ,p)
292 (q ,q)
293 r)
294 ((or (endp p) (endp q))
295 ;; NOTE: R contains the result in reverse order. Can it
296 ;; be more efficient to produce the terms in correct order?
297 (unless (endp q)
298 ;; Upon subtraction, we must change the sign of
299 ;; all coefficients in q
300 ,@(when uminus-fn
301 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
302 (setf r (nreconc r q)))
303 (unless (endp p)
304 (setf r (nreconc r p)))
305 r)
306 (multiple-value-bind
307 (greater-p equal-p)
308 (funcall ,order-fn (car p) (car q))
309 (cond
310 (greater-p
311 (rotatef (cdr p) r p)
312 )
313 (equal-p
314 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
315 (cond
316 ((universal-zerop s)
317 (setf p (cdr p))
318 )
319 (t
320 (setf (lc p) s)
321 (rotatef (cdr p) r p))))
322 (setf q (cdr q))
323 )
324 (t
325 ;;Negate the term of Q if UMINUS provided, signallig
326 ;;that we are doing subtraction
327 ,(when uminus-fn
328 `(setf (lc q) (funcall ,uminus-fn (lc q))))
329 (rotatef (cdr q) r q))))
330 ;;(format t "P:~A~%" p)
331 ;;(format t "Q:~A~%" q)
332 ;;(format t "R:~A~%" r)
333 )))
334|#
335
336
337
338
339#|
340(defun fast-add (p q order-fn add-fn)
341 "Add two polynomials, P and Q, represented as lists of terms.
342The operation is destructive to both polynomials, as the terms
343of both lists are combined into the result. The operation does not
344create any new instance of TERM."
345 (macrolet ((lc (x) `(term-coeff (car ,x))))
346 (do (r)
347 ((or (endp p) (endp q))
348 ;; NOTE: R contains the result in reverse order. Can it
349 ;; be more efficient to produce the terms in correct order?
350 (unless (endp q)
351 (setf r (nreconc r q)))
352 (unless (endp p)
353 (setf r (nreconc r p)))
354 r)
355 (multiple-value-bind
356 (greater-p equal-p)
357 (funcall order-fn (car p) (car q))
358 (cond
359 (greater-p
360 (rotatef (cdr p) r p)
361 )
362 (equal-p
363 (let ((s (funcall add-fn (lc p) (lc q))))
364 (cond
365 ((universal-zerop s)
366 (setf p (cdr p))
367 )
368 (t
369 (setf (lc p) s)
370 (rotatef (cdr p) r p))))
371 (setf q (cdr q))
372 )
373 (t
374 (rotatef (cdr q) r q)))))))
375|#
376
377;; Shorthand for leading coefficient of a termlist
378(defmacro lc (x) `(term-coeff (car ,x)))
379
380(defun slow-add (p q order-fn add-fn)
381 (cond
382 ((endp p) q)
383 ((endp q) p)
384 (t
385 (multiple-value-bind
386 (greater-p equal-p)
387 (funcall order-fn (car p) (car q))
388 (cond
389 (greater-p ; (> (car p) (car q))
390 (cons (car p) (slow-add (cdr p) q order-fn add-fn))
391 )
392 (equal-p ; (= (car p)) (car q))
393 (let ((s (funcall add-fn (lc p) (lc q))))
394 (cond
395 ((universal-zerop s)
396 (slow-add (cdr p) (cdr q) order-fn add-fn))
397 (t
398 ;; Adjust the lc of p
399 (setf (lc p) s)
400 (cons (car p) (slow-add (cdr p) (cdr q) order-fn add-fn))
401 ))))
402 (t ;(< (car p) (car q))
403 (cons (car q) (slow-add p (cdr q) order-fn add-fn))
404 ))))))
405
406
407(defun fast-and-risky-add (p q order-fn add-fn &aux result result-last)
408 (when (and p q (eq p q)) (warn "FAST-AND-RISKY-ADD: ~S is EQ to ~S" p q))
409 (flet ((add-to-result (x)
410 (assert (consp x))
411 (setf (cdr x) nil)
412 (if (endp result)
413 (setf result x
414 result-last x)
415 (setf (cdr result-last) x
416 result-last (cdr result-last)))))
417 (loop
418 (cond
419 ((endp p) (unless (endp q) (add-to-result q)) (return result))
420 ((endp q) (unless (endp p) (add-to-result p)) (return result))
421 (t
422 (multiple-value-bind
423 (greater-p equal-p)
424 (funcall order-fn (car p) (car q))
425 (cond
426 (greater-p ; (> (car p) (car q))
427 (let ((tmp (cdr p)))
428 (add-to-result p)
429 (setf p tmp)))
430 (equal-p ; (= (car p)) (car q))
431 (let ((s (funcall add-fn (lc p) (lc q))))
432 (cond
433 ((universal-zerop s)
434 ;; Terms cancel, discard both
435 (setf p (cdr p)
436 q (cdr q)))
437 (t
438 ;; Terms do not cancel, store the
439 ;; sum of coefficients in (lc p)
440 (setf (lc p) s)
441 (let ((tmp (cdr p)))
442 (add-to-result p)
443 (setf p tmp
444 q (cdr q)))))))
445 (t ;(< (car p) (car q))
446 (let ((tmp (cdr q)))
447 (add-to-result q)
448 (setf q tmp))
449 ))))))))
450
451(defun fast-add (p q order-fn add-fn)
452 "This version calls SLOW-ADD and is bullet-proof."
453 (slow-add p q order-fn add-fn)
454 ;;(fast-and-risky-add p q order-fn add-fn)
455 )
456
457#|
458;; NOTE: The stuff below works, but may not be worth the trouble.
459
460(defmacro def-add/subtract-method (add/subtract-method-name
461 uminus-method-name
462 &optional
463 (doc-string nil doc-string-supplied-p))
464 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
465 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
466 ,@(when doc-string-supplied-p `(,doc-string))
467 ;; Ensure orders are compatible
468 (change-term-order other self)
469 (setf (poly-termlist self) (fast-add/subtract
470 (poly-termlist self) (poly-termlist other)
471 (poly-term-order self)
472 #',add/subtract-method-name
473 ,(when uminus-method-name `(function ,uminus-method-name))))
474 self))
475
476(eval-when (:load-toplevel :execute)
477
478 (def-add/subtract-method add-to nil
479 "Adds to polynomial SELF another polynomial OTHER.
480This operation destructively modifies both polynomials.
481The result is stored in SELF. This implementation does
482no consing, entirely reusing the sells of SELF and OTHER.")
483
484 (def-add/subtract-method subtract-from unary-minus
485 "Subtracts from polynomial SELF another polynomial OTHER.
486This operation destructively modifies both polynomials.
487The result is stored in SELF. This implementation does
488no consing, entirely reusing the sells of SELF and OTHER.")
489 )
490
491|#
492
493(defmethod unary-minus ((self poly))
494 "Destructively modifies the coefficients of the polynomial SELF,
495by changing their sign."
496 (mapc #'unary-minus (poly-termlist self))
497 self)
498
499(defun add-termlists (p q order-fn)
500 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
501 (fast-add p q order-fn #'add-to))
502
503(defun subtract-termlists (p q order-fn)
504 "Destructively subtracts two termlists P and Q ordered according to ORDER-FN."
505 (setf q (mapc #'unary-minus q))
506 (add-termlists p q order-fn))
507
508(defmethod add-to ((self poly) (other poly))
509 "Adds to polynomial SELF another polynomial OTHER.
510This operation destructively modifies both polynomials.
511The result is stored in SELF. This implementation does
512no consing, entirely reusing the sells of SELF and OTHER."
513 (change-term-order other self)
514 (setf (poly-termlist self) (add-termlists
515 (poly-termlist self) (poly-termlist other)
516 (poly-term-order self)))
517 self)
518
519
520(defmethod subtract-from ((self poly) (other poly))
521 "Subtracts from polynomial SELF another polynomial OTHER.
522This operation destructively modifies both polynomials.
523The result is stored in SELF. This implementation does
524no consing, entirely reusing the sells of SELF and OTHER."
525 (change-term-order other self)
526 (setf (poly-termlist self) (subtract-termlists
527 (poly-termlist self) (poly-termlist other)
528 (poly-term-order self)))
529 self)
530
531
532(defmethod add-to ((self poly) (other term))
533 "Adds to a polynomial SELF a term OTHER. The term OTHER is not
534modified."
535 (add-to self (change-class other 'poly)))
536
537(defmethod subtract-from ((self poly) (other term))
538 "Subtracts from a polynomial SELF a term OTHER. The term OTHER is not
539modified."
540 (subtract-from self (change-class other 'poly)))
541
542
543(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
544 &optional (reverse-arg-order-P nil))
545 "Multiplies term TERM by a list of term, TERMLIST.
546Takes into accound divisors of zero in the ring, by
547deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
548is T, change the order of arguments; this may be important
549if we extend the package to non-commutative rings."
550 `(mapcan #'(lambda (other-term)
551 (let ((prod (multiply
552 ,@(cond
553 (reverse-arg-order-p
554 `(other-term ,term))
555 (t
556 `(,term other-term))))))
557 (cond
558 ((universal-zerop prod) nil)
559 (t (list prod)))))
560 ,termlist))
561
562(defun multiply-termlists (p q order-fn)
563 "A version of polynomial multiplication, operating
564directly on termlists."
565 (cond
566 ((or (endp p) (endp q))
567 ;;p or q is 0 (represented by NIL)
568 nil)
569 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
570 ((endp (cdr p))
571 (multiply-term-by-termlist-dropping-zeros (car p) q))
572 ((endp (cdr q))
573 (multiply-term-by-termlist-dropping-zeros (car q) p t))
574 (t
575 (cons (multiply (car p) (car q))
576 (add-termlists
577 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
578 (multiply-termlists (cdr p) q order-fn)
579 order-fn)))))
580
581(defmethod multiply-by ((self poly) (other poly) &aux (other-copy (copy-instance other)))
582 (change-term-order other-copy self)
583 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
584 (poly-termlist other-copy)
585 (poly-term-order self)))
586 self)
587
588(defmethod left-tensor-product-by ((self poly) (other monom))
589 (setf (poly-termlist self)
590 (mapcan #'(lambda (term)
591 (let ((prod (left-tensor-product-by term other)))
592 (cond
593 ((universal-zerop prod) nil)
594 (t (list prod)))))
595 (poly-termlist self)))
596 self)
597
598(defmethod right-tensor-product-by ((self poly) (other monom))
599 (setf (poly-termlist self)
600 (mapcan #'(lambda (term)
601 (let ((prod (right-tensor-product-by term other)))
602 (cond
603 ((universal-zerop prod) nil)
604 (t (list prod)))))
605 (poly-termlist self)))
606 self)
607
608
609(defun standard-extension (plist &aux (k (length plist)) (i 0))
610 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
611is a list of polynomials. Destructively modifies PLIST elements."
612 (mapc #'(lambda (poly)
613 (left-tensor-product-by
614 poly
615 (prog1
616 (make-monom-variable k i)
617 (incf i))))
618 plist))
619
620(defun standard-extension-1 (plist
621 &aux
622 (plist (standard-extension plist))
623 (nvars (poly-dimension (car plist))))
624 "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
625Firstly, new K variables U1, U2, ..., UK, are inserted into each
626polynomial. Subsequently, P1, P2, ..., PK are destructively modified
627tantamount to replacing PI with UI*PI-1. It assumes that all
628polynomials have the same dimension, and only the first polynomial
629is examined to determine this dimension."
630 ;; Implementation note: we use STANDARD-EXTENSION and then subtract
631 ;; 1 from each polynomial; since UI*PI has no constant term,
632 ;; we just need to append the constant term at the end
633 ;; of each termlist.
634 (flet ((subtract-1 (p)
635 (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
636 (setf plist (mapc #'subtract-1 plist)))
637 plist)
638
639
640(defun standard-sum (plist
641 &aux
642 (plist (standard-extension plist))
643 (nvars (poly-dimension (car plist))))
644 "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
645Firstly, new K variables, U1, U2, ..., UK, are inserted into each
646polynomial. Subsequently, P1, P2, ..., PK are destructively modified
647tantamount to replacing PI with UI*PI, and the resulting polynomials
648are added. Finally, 1 is subtracted. It should be noted that the term
649order is not modified, which is equivalent to using a lexicographic
650order on the first K variables."
651 (flet ((subtract-1 (p)
652 (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
653 (subtract-1
654 (make-instance
655 'poly
656 :termlist (apply #'nconc (mapcar #'poly-termlist plist))))))
657
658(defgeneric s-polynomial (object1 object2)
659 (:documentation "Yields the S-polynomial of OBJECT1 and OBJECT2.")
660 (:method ((f poly) (g poly))
661 (let* ((lcm (universal-lcm (leading-monomial f) (leading-monomial g)))
662 (mf (divide lcm (leading-monomial f)))
663 (mg (divide lcm (leading-monomial g))))
664 (multiple-value-bind (c cf cg)
665 (universal-ezgcd (leading-coefficient f) (leading-coefficient g))
666 (declare (ignore c))
667 (subtract
668 (multiply f mf cg)
669 (multiply g mg cf))))))
670
671(defgeneric poly-content (object)
672 (:documentation "Greatest common divisor of the coefficients of the polynomial object OBJECT.")
673 (:method ((self poly))
674 (reduce #'universal-gcd
675 (mapcar #'term-coeff (rest (poly-termlist self)))
676 :initial-value (leading-coefficient self))))
677
678(defun poly-primitive-part (self)
679 "Divide polynomial SELF by gcd of its
680coefficients. Return the resulting polynomial."
681 (scalar-divide-by self (poly-content self)))
682
683(defun poly-insert-variables (self k)
684 (left-tensor-product-by self (make-instance 'monom :dimension k)))
685
686(defun saturation-extension (f plist &aux (k (length plist)))
687 "Calculate [F', U1*P1-1,U2*P2-1,...,UK*PK-1], where
688PLIST=[P1,P2,...,PK] and F' is F with variables U1,U2,...,UK inserted
689as first K variables. It destructively modifies F and PLIST."
690 (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
691 (standard-extension-1 plist)))
692
693(defun polysaturation-extension (f plist &aux (k (length plist)))
694 "Calculate [F', U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]
695and F' is F with variables U1,U2,...,UK inserted as first K
696variables. It destructively modifies F and PLIST."
697 (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
698 (list (standard-sum plist))))
699
700(defun saturation-extension-1 (f p)
701 "Given family of polynomials F and a polynomial P, calculate [F',
702U*P-1], where F' is F with variable inserted as the first variable. It
703destructively modifies F and P."
704 (polysaturation-extension f (list p)))
705
706(defmethod multiply-by ((self poly) (other ring))
707 (scalar-multiply-by self other))
708
709(defun make-poly-variable (nvars pos &optional (power 1))
710 (change-class (make-monom-variable nvars pos power) 'poly))
711
712(defun make-poly-constant (nvars coeff)
713 (change-class (make-term-constant nvars coeff) 'poly))
714
715(defgeneric universal-expt (x y)
716 (:documentation "Raises X to power Y.")
717 (:method ((x number) (y integer)) (expt x y))
718 (:method ((x t) (y integer))
719 (declare (type fixnum y))
720 (cond
721 ((minusp y) (error "universal-expt: Negative exponent."))
722 ((universal-zerop x) (if (zerop y) 1))
723 (t
724 (do ((k 1 (ash k 1))
725 (q x (multiply q q)) ;keep squaring
726 (p (make-unit-for x) (if (not (zerop (logand k y))) (multiply p q) p)))
727 ((> k y) p)
728 (declare (fixnum k)))))))
729
730(defgeneric poly-p (object)
731 (:documentation "Checks if an object is a polynomial.")
732 (:method ((self poly)) t)
733 (:method ((self t)) nil))
734
735(defmethod ->sexp :before ((self poly) &optional vars)
736 "Ensures that the number of variables in VARS maches the polynomial dimension of the
737polynomial SELF."
738 (unless (endp (poly-termlist self))
739 (let ((dimension (poly-dimension self)))
740 (assert (= (length vars) dimension)
741 nil
742 "Number of variables ~S does not match the dimension ~S"
743 vars dimension))))
744
745(defmethod ->sexp ((self poly) &optional vars)
746 "Converts a polynomial SELF to a sexp."
747 (let ((m (mapcar #'(lambda (trm) (->sexp trm vars))
748 (poly-termlist self))))
749 (cond ((endp m) 0)
750 ((endp (cdr m)) (car m))
751 (t (cons '+ m)))))
752
753(defconstant +list-marker+ :[
754 "A sexp with this head is considered a list of polynomials.")
755
756(defmethod ->sexp ((self cons) &optional vars)
757 (assert (eql (car self) +list-marker+))
758 (cons +list-marker+ (mapcar #'(lambda (p) (->sexp p vars)) (cdr self))))
759
760(defmethod make-zero-for ((self poly))
761 (make-instance 'poly))
762
763(defmethod make-unit-for ((self poly))
764 (make-poly-constant (poly-dimension self) 1))
765
766(defgeneric poly-reverse (self)
767 (:documentation "Reverse the order of terms in a polynomial SELF.")
768 (:method ((self poly))
769 (with-slots (termlist)
770 self
771 (setf termlist (nreverse termlist)))
772 self))
773
774
775
Note: See TracBrowser for help on using the repository browser.