| 1 | ;;---------------------------------------------------------------- | 
|---|
| 2 | ;; File:     polynomial.lisp | 
|---|
| 3 | ;;---------------------------------------------------------------- | 
|---|
| 4 | ;; | 
|---|
| 5 | ;; Author:   Marek Rychlik (rychlik@u.arizona.edu) | 
|---|
| 6 | ;; Date:     Thu Aug 27 09:41:24 2015 | 
|---|
| 7 | ;; Copying:  (C) Marek Rychlik, 2010. All rights reserved. | 
|---|
| 8 | ;; | 
|---|
| 9 | ;;---------------------------------------------------------------- | 
|---|
| 10 | ;;; -*-  Mode: Lisp -*- | 
|---|
| 11 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 12 | ;;; | 
|---|
| 13 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
| 14 | ;;; | 
|---|
| 15 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
| 16 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
| 17 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
| 18 | ;;;  (at your option) any later version. | 
|---|
| 19 | ;;; | 
|---|
| 20 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
| 21 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 22 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 23 | ;;;  GNU General Public License for more details. | 
|---|
| 24 | ;;; | 
|---|
| 25 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
| 26 | ;;;  along with this program; if not, write to the Free Software | 
|---|
| 27 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
| 28 | ;;; | 
|---|
| 29 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 30 |  | 
|---|
| 31 | (defpackage "POLYNOMIAL" | 
|---|
| 32 | (:use :cl :utils :monom :copy) | 
|---|
| 33 | (:export "POLY" | 
|---|
| 34 | "POLY-DIMENSION" | 
|---|
| 35 | "POLY-TERMLIST" | 
|---|
| 36 | "POLY-TERM-ORDER" | 
|---|
| 37 | "POLY-INSERT-TERM" | 
|---|
| 38 | "LEADING-TERM" | 
|---|
| 39 | "LEADING-COEFFICIENT" | 
|---|
| 40 | "ADD-TO" | 
|---|
| 41 | "ADD" | 
|---|
| 42 | "SUBTRACT-FROM" | 
|---|
| 43 | "SUBTRACT" | 
|---|
| 44 | "CHANGE-TERM-ORDER" | 
|---|
| 45 | "STANDARD-EXTENSION" | 
|---|
| 46 | "STANDARD-EXTENSION-1" | 
|---|
| 47 | "STANDARD-SUM" | 
|---|
| 48 | "SATURATION-EXTENSION" | 
|---|
| 49 | "ALIST->POLY" | 
|---|
| 50 | "UNIVERSAL-EZGCD" | 
|---|
| 51 | "S-POLYNOMIAL") | 
|---|
| 52 | (:documentation "Implements polynomials. A polynomial is essentially | 
|---|
| 53 | a mapping of monomials of the same degree to coefficients. The | 
|---|
| 54 | momomials are ordered according to a monomial order.")) | 
|---|
| 55 |  | 
|---|
| 56 | (in-package :polynomial) | 
|---|
| 57 |  | 
|---|
| 58 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0))) | 
|---|
| 59 |  | 
|---|
| 60 | (defclass poly () | 
|---|
| 61 | ((dimension :initform nil | 
|---|
| 62 | :initarg :dimension | 
|---|
| 63 | :accessor poly-dimension | 
|---|
| 64 | :documentation "Shared dimension of all terms, the number of variables") | 
|---|
| 65 | (termlist :initform nil :initarg :termlist :accessor poly-termlist | 
|---|
| 66 | :documentation "List of terms.") | 
|---|
| 67 | (order :initform #'lex> :initarg :order :accessor poly-term-order | 
|---|
| 68 | :documentation "Monomial/term order.")) | 
|---|
| 69 | (:default-initargs :dimension nil :termlist nil :order #'lex>) | 
|---|
| 70 | (:documentation "A polynomial with a list of terms TERMLIST, ordered | 
|---|
| 71 | according to term order ORDER, which defaults to LEX>.")) | 
|---|
| 72 |  | 
|---|
| 73 | (defmethod print-object ((self poly) stream) | 
|---|
| 74 | (print-unreadable-object (self stream :type t :identity t) | 
|---|
| 75 | (with-accessors ((dimension poly-dimension) | 
|---|
| 76 | (termlist poly-termlist) | 
|---|
| 77 | (order poly-term-order)) | 
|---|
| 78 | self | 
|---|
| 79 | (format stream "DIMENSION=~A TERMLIST=~A ORDER=~A" | 
|---|
| 80 | dimension termlist order)))) | 
|---|
| 81 |  | 
|---|
| 82 | (defgeneric change-term-order (self other) | 
|---|
| 83 | (:documentation "Change term order of SELF to the term order of OTHER.") | 
|---|
| 84 | (:method ((self poly) (other poly)) | 
|---|
| 85 | (unless (eq (poly-term-order self) (poly-term-order other)) | 
|---|
| 86 | (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other)) | 
|---|
| 87 | (poly-term-order self) (poly-term-order other))) | 
|---|
| 88 | self)) | 
|---|
| 89 |  | 
|---|
| 90 | (defgeneric poly-insert-term (self term) | 
|---|
| 91 | (:documentation "Insert a term TERM into SELF before all other | 
|---|
| 92 | terms. Order is not enforced.") | 
|---|
| 93 | (:method ((self poly) (term term)) | 
|---|
| 94 | (cond ((null (poly-dimension self)) | 
|---|
| 95 | (setf (poly-dimension self) (monom-dimension term))) | 
|---|
| 96 | (t (assert (= (poly-dimension self) (monom-dimension term))))) | 
|---|
| 97 | (push term (poly-termlist self)) | 
|---|
| 98 | self)) | 
|---|
| 99 |  | 
|---|
| 100 | (defgeneric poly-append-term (self term) | 
|---|
| 101 | (:documentation "Append a term TERM to SELF after all other terms. Order is not enforced.") | 
|---|
| 102 | (:method ((self poly) (term term)) | 
|---|
| 103 | (cond ((null (poly-dimension self)) | 
|---|
| 104 | (setf (poly-dimension self) (monom-dimension term))) | 
|---|
| 105 | (t (assert (= (poly-dimension self) (monom-dimension term))))) | 
|---|
| 106 | (setf (cdr (last (poly-termlist self))) (list term)) | 
|---|
| 107 | self)) | 
|---|
| 108 |  | 
|---|
| 109 | (defun alist->poly (alist &aux (poly (make-instance 'poly))) | 
|---|
| 110 | "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...). | 
|---|
| 111 | It can be used to enter simple polynomials by hand, e.g the polynomial | 
|---|
| 112 | in two variables, X and Y, given in standard notation as: | 
|---|
| 113 |  | 
|---|
| 114 | 3*X^2*Y^3+2*Y+7 | 
|---|
| 115 |  | 
|---|
| 116 | can be entered as | 
|---|
| 117 | (ALIST->POLY '(((2 3) . 3) ((0 1) . 2) ((0 0) . 7))). | 
|---|
| 118 |  | 
|---|
| 119 | NOTE: The primary use is for low-level debugging of the package." | 
|---|
| 120 | (dolist (x alist poly) | 
|---|
| 121 | (poly-insert-term poly (make-instance 'term :exponents (car x) :coeff (cdr x))))) | 
|---|
| 122 |  | 
|---|
| 123 | (defmethod update-instance-for-different-class :after ((old monom) (new poly) &key) | 
|---|
| 124 | "Converts OLD of class MONOM to a NEW of class POLY, by making it into a 1-element TERMLIST." | 
|---|
| 125 | (reinitialize-instance new | 
|---|
| 126 | :dimension (monom-dimension old) | 
|---|
| 127 | :termlist (list (cons old 1)))) | 
|---|
| 128 |  | 
|---|
| 129 | (defmethod universal-equalp ((self poly) (other poly)) | 
|---|
| 130 | "Implements equality of polynomials." | 
|---|
| 131 | (and (eql (poly-dimension self) (poly-dimension other)) | 
|---|
| 132 | (every #'universal-equalp (poly-termlist self) (poly-termlist other)) | 
|---|
| 133 | (eq (poly-term-order self) (poly-term-order other)))) | 
|---|
| 134 |  | 
|---|
| 135 | (defgeneric leading-term (object) | 
|---|
| 136 | (:method ((self poly)) | 
|---|
| 137 | (car (poly-termlist self))) | 
|---|
| 138 | (:documentation "The leading term of a polynomial, or NIL for zero polynomial.")) | 
|---|
| 139 |  | 
|---|
| 140 | (defgeneric second-leading-term (object) | 
|---|
| 141 | (:method ((self poly)) | 
|---|
| 142 | (cadar (poly-termlist self))) | 
|---|
| 143 | (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term.")) | 
|---|
| 144 |  | 
|---|
| 145 | (defgeneric leading-monomial (object) | 
|---|
| 146 | (:method ((self poly)) | 
|---|
| 147 | (change-class (copy-instance (leading-term self)) 'monom)) | 
|---|
| 148 | (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial.")) | 
|---|
| 149 |  | 
|---|
| 150 | (defgeneric second-leading-monomial (object) | 
|---|
| 151 | (:method ((self poly)) | 
|---|
| 152 | (change-class (copy-instance (second-leading-term self)) 'monom)) | 
|---|
| 153 | (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial.")) | 
|---|
| 154 |  | 
|---|
| 155 |  | 
|---|
| 156 |  | 
|---|
| 157 | (defgeneric leading-coefficient (object) | 
|---|
| 158 | (:method ((self poly)) | 
|---|
| 159 | (term-coeff (leading-term self))) | 
|---|
| 160 | (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial.")) | 
|---|
| 161 |  | 
|---|
| 162 | (defgeneric second-leading-coefficient (object) | 
|---|
| 163 | (:method ((self poly)) | 
|---|
| 164 | (term-coeff (second-leading-term self))) | 
|---|
| 165 | (:documentation "The second leading coefficient of a polynomial. It | 
|---|
| 166 | signals error for a polynomial with at most one term.")) | 
|---|
| 167 |  | 
|---|
| 168 | (defmethod universal-zerop ((self poly)) | 
|---|
| 169 | "Return T iff SELF is a zero polynomial." | 
|---|
| 170 | (null (poly-termlist self))) | 
|---|
| 171 |  | 
|---|
| 172 | (defgeneric poly-length (self) | 
|---|
| 173 | (:documentation "Return the number of terms.") | 
|---|
| 174 | (:method ((self poly)) | 
|---|
| 175 | (length (poly-termlist self)))) | 
|---|
| 176 |  | 
|---|
| 177 | (defmethod multiply-by ((self poly) (other monom)) | 
|---|
| 178 | "Multiply a polynomial SELF by OTHER." | 
|---|
| 179 | (mapc #'(lambda (term) (multiply-by term other)) | 
|---|
| 180 | (poly-termlist self)) | 
|---|
| 181 | self) | 
|---|
| 182 |  | 
|---|
| 183 | (defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn) | 
|---|
| 184 | "Return an expression which will efficiently adds/subtracts two | 
|---|
| 185 | polynomials, P and Q.  The addition/subtraction of coefficients is | 
|---|
| 186 | performed by calling ADD/SUBTRACT-METHOD-NAME.  If UMINUS-METHOD-NAME | 
|---|
| 187 | is supplied, it is used to negate the coefficients of Q which do not | 
|---|
| 188 | have a corresponding coefficient in P. The code implements an | 
|---|
| 189 | efficient algorithm to add two polynomials represented as sorted lists | 
|---|
| 190 | of terms. The code destroys both arguments, reusing the terms to build | 
|---|
| 191 | the result." | 
|---|
| 192 | `(macrolet ((lc (x) `(term-coeff (car ,x)))) | 
|---|
| 193 | (do ((p ,p) | 
|---|
| 194 | (q ,q) | 
|---|
| 195 | r) | 
|---|
| 196 | ((or (endp p) (endp q)) | 
|---|
| 197 | ;; NOTE: R contains the result in reverse order. Can it | 
|---|
| 198 | ;; be more efficient to produce the terms in correct order? | 
|---|
| 199 | (unless (endp q) | 
|---|
| 200 | ;; Upon subtraction, we must change the sign of | 
|---|
| 201 | ;; all coefficients in q | 
|---|
| 202 | ,@(when uminus-fn | 
|---|
| 203 | `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q))) | 
|---|
| 204 | (setf r (nreconc r q))) | 
|---|
| 205 | r) | 
|---|
| 206 | (multiple-value-bind | 
|---|
| 207 | (greater-p equal-p) | 
|---|
| 208 | (funcall ,order-fn (car p) (car q)) | 
|---|
| 209 | (cond | 
|---|
| 210 | (greater-p | 
|---|
| 211 | (rotatef (cdr p) r p) | 
|---|
| 212 | ) | 
|---|
| 213 | (equal-p | 
|---|
| 214 | (let ((s (funcall ,add/subtract-fn (lc p) (lc q)))) | 
|---|
| 215 | (cond | 
|---|
| 216 | ((universal-zerop s) | 
|---|
| 217 | (setf p (cdr p)) | 
|---|
| 218 | ) | 
|---|
| 219 | (t | 
|---|
| 220 | (setf (lc p) s) | 
|---|
| 221 | (rotatef (cdr p) r p)))) | 
|---|
| 222 | (setf q (cdr q)) | 
|---|
| 223 | ) | 
|---|
| 224 | (t | 
|---|
| 225 | ;;Negate the term of Q if UMINUS provided, signallig | 
|---|
| 226 | ;;that we are doing subtraction | 
|---|
| 227 | ,(when uminus-fn | 
|---|
| 228 | `(setf (lc q) (funcall ,uminus-fn (lc q)))) | 
|---|
| 229 | (rotatef (cdr q) r q))))))) | 
|---|
| 230 |  | 
|---|
| 231 |  | 
|---|
| 232 | (defgeneric add-to (self other) | 
|---|
| 233 | (:documentation "Add OTHER to SELF.") | 
|---|
| 234 | (:method ((self number) (other number)) | 
|---|
| 235 | (+ self other))) | 
|---|
| 236 |  | 
|---|
| 237 | (defgeneric subtract-from (self other) | 
|---|
| 238 | (:documentation "Subtract OTHER from SELF.") | 
|---|
| 239 | (:method ((self number) (other number)) | 
|---|
| 240 | (- self other))) | 
|---|
| 241 |  | 
|---|
| 242 | (defmacro def-add/subtract-method (add/subtract-method-name | 
|---|
| 243 | uminus-method-name | 
|---|
| 244 | &optional | 
|---|
| 245 | (doc-string nil doc-string-supplied-p)) | 
|---|
| 246 | "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM." | 
|---|
| 247 | `(defmethod ,add/subtract-method-name ((self poly) (other poly)) | 
|---|
| 248 | ,@(when doc-string-supplied-p `(,doc-string)) | 
|---|
| 249 | ;; Ensure orders are compatible | 
|---|
| 250 | (change-term-order other self) | 
|---|
| 251 | (setf (poly-termlist self) (fast-add/subtract | 
|---|
| 252 | (poly-termlist self) (poly-termlist other) | 
|---|
| 253 | (poly-term-order self) | 
|---|
| 254 | #',add/subtract-method-name | 
|---|
| 255 | ,(when uminus-method-name `(function ,uminus-method-name)))) | 
|---|
| 256 | self)) | 
|---|
| 257 |  | 
|---|
| 258 | (eval-when (:compile-toplevel :load-toplevel :execute) | 
|---|
| 259 |  | 
|---|
| 260 | (def-add/subtract-method add-to nil | 
|---|
| 261 | "Adds to polynomial SELF another polynomial OTHER. | 
|---|
| 262 | This operation destructively modifies both polynomials. | 
|---|
| 263 | The result is stored in SELF. This implementation does | 
|---|
| 264 | no consing, entirely reusing the sells of SELF and OTHER.") | 
|---|
| 265 |  | 
|---|
| 266 | (def-add/subtract-method subtract-from unary-minus | 
|---|
| 267 | "Subtracts from polynomial SELF another polynomial OTHER. | 
|---|
| 268 | This operation destructively modifies both polynomials. | 
|---|
| 269 | The result is stored in SELF. This implementation does | 
|---|
| 270 | no consing, entirely reusing the sells of SELF and OTHER.") | 
|---|
| 271 | ) | 
|---|
| 272 |  | 
|---|
| 273 | (defmethod unary-minus ((self poly)) | 
|---|
| 274 | "Destructively modifies the coefficients of the polynomial SELF, | 
|---|
| 275 | by changing their sign." | 
|---|
| 276 | (mapc #'unary-minus (poly-termlist self)) | 
|---|
| 277 | self) | 
|---|
| 278 |  | 
|---|
| 279 | (defun add-termlists (p q order-fn) | 
|---|
| 280 | "Destructively adds two termlists P and Q ordered according to ORDER-FN." | 
|---|
| 281 | (fast-add/subtract p q order-fn #'add-to nil)) | 
|---|
| 282 |  | 
|---|
| 283 | (defmacro multiply-term-by-termlist-dropping-zeros (term termlist | 
|---|
| 284 | &optional (reverse-arg-order-P nil)) | 
|---|
| 285 | "Multiplies term TERM by a list of term, TERMLIST. | 
|---|
| 286 | Takes into accound divisors of zero in the ring, by | 
|---|
| 287 | deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P | 
|---|
| 288 | is T, change the order of arguments; this may be important | 
|---|
| 289 | if we extend the package to non-commutative rings." | 
|---|
| 290 | `(mapcan #'(lambda (other-term) | 
|---|
| 291 | (let ((prod (multiply | 
|---|
| 292 | ,@(cond | 
|---|
| 293 | (reverse-arg-order-p | 
|---|
| 294 | `(other-term ,term)) | 
|---|
| 295 | (t | 
|---|
| 296 | `(,term other-term)))))) | 
|---|
| 297 | (cond | 
|---|
| 298 | ((universal-zerop prod) nil) | 
|---|
| 299 | (t (list prod))))) | 
|---|
| 300 | ,termlist)) | 
|---|
| 301 |  | 
|---|
| 302 | (defun multiply-termlists (p q order-fn) | 
|---|
| 303 | "A version of polynomial multiplication, operating | 
|---|
| 304 | directly on termlists." | 
|---|
| 305 | (cond | 
|---|
| 306 | ((or (endp p) (endp q)) | 
|---|
| 307 | ;;p or q is 0 (represented by NIL) | 
|---|
| 308 | nil) | 
|---|
| 309 | ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q | 
|---|
| 310 | ((endp (cdr p)) | 
|---|
| 311 | (multiply-term-by-termlist-dropping-zeros (car p) q)) | 
|---|
| 312 | ((endp (cdr q)) | 
|---|
| 313 | (multiply-term-by-termlist-dropping-zeros (car q) p t)) | 
|---|
| 314 | (t | 
|---|
| 315 | (cons (multiply (car p) (car q)) | 
|---|
| 316 | (add-termlists | 
|---|
| 317 | (multiply-term-by-termlist-dropping-zeros (car p) (cdr q)) | 
|---|
| 318 | (multiply-termlists (cdr p) q order-fn) | 
|---|
| 319 | order-fn))))) | 
|---|
| 320 |  | 
|---|
| 321 | (defmethod multiply-by ((self poly) (other poly)) | 
|---|
| 322 | (change-term-order other self) | 
|---|
| 323 | (setf (poly-termlist self) (multiply-termlists (poly-termlist self) | 
|---|
| 324 | (poly-termlist other) | 
|---|
| 325 | (poly-term-order self))) | 
|---|
| 326 | self) | 
|---|
| 327 |  | 
|---|
| 328 | (defun add (object1 object2) | 
|---|
| 329 | "Non-destructively add POLY1 by POLY2." | 
|---|
| 330 | (add-to (copy-instance object1) (copy-instance object2))) | 
|---|
| 331 |  | 
|---|
| 332 | (defun subtract (minuend  &rest subtrahends) | 
|---|
| 333 | "Non-destructively subtract MINUEND and SUBTRAHENDS." | 
|---|
| 334 | (subtract-from (copy-instance minuend) (reduce #'add subtrahends))) | 
|---|
| 335 |  | 
|---|
| 336 | (defmethod left-tensor-product-by ((self poly) (other monom)) | 
|---|
| 337 | (setf (poly-termlist self) | 
|---|
| 338 | (mapcan #'(lambda (term) | 
|---|
| 339 | (let ((prod (left-tensor-product-by term other))) | 
|---|
| 340 | (cond | 
|---|
| 341 | ((universal-zerop prod) nil) | 
|---|
| 342 | (t (list prod))))) | 
|---|
| 343 | (poly-termlist self))) | 
|---|
| 344 | (incf (poly-dimension self) (monom-dimension other)) | 
|---|
| 345 | self) | 
|---|
| 346 |  | 
|---|
| 347 | (defmethod right-tensor-product-by ((self poly) (other monom)) | 
|---|
| 348 | (setf (poly-termlist self) | 
|---|
| 349 | (mapcan #'(lambda (term) | 
|---|
| 350 | (let ((prod (right-tensor-product-by term other))) | 
|---|
| 351 | (cond | 
|---|
| 352 | ((universal-zerop prod) nil) | 
|---|
| 353 | (t (list prod))))) | 
|---|
| 354 | (poly-termlist self))) | 
|---|
| 355 | (incf (poly-dimension self) (monom-dimension other)) | 
|---|
| 356 | self) | 
|---|
| 357 |  | 
|---|
| 358 |  | 
|---|
| 359 | (defun standard-extension (plist &aux (k (length plist)) (i 0)) | 
|---|
| 360 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK] | 
|---|
| 361 | is a list of polynomials. Destructively modifies PLIST elements." | 
|---|
| 362 | (mapc #'(lambda (poly) | 
|---|
| 363 | (left-tensor-product-by | 
|---|
| 364 | poly | 
|---|
| 365 | (prog1 | 
|---|
| 366 | (make-monom-variable k i) | 
|---|
| 367 | (incf i)))) | 
|---|
| 368 | plist)) | 
|---|
| 369 |  | 
|---|
| 370 | (defun standard-extension-1 (plist | 
|---|
| 371 | &aux | 
|---|
| 372 | (plist (standard-extension plist)) | 
|---|
| 373 | (nvars (poly-dimension (car plist)))) | 
|---|
| 374 | "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]. | 
|---|
| 375 | Firstly, new K variables U1, U2, ..., UK, are inserted into each | 
|---|
| 376 | polynomial.  Subsequently, P1, P2, ..., PK are destructively modified | 
|---|
| 377 | tantamount to replacing PI with UI*PI-1. It assumes that all | 
|---|
| 378 | polynomials have the same dimension, and only the first polynomial | 
|---|
| 379 | is examined to determine this dimension." | 
|---|
| 380 | ;; Implementation note: we use STANDARD-EXTENSION and then subtract | 
|---|
| 381 | ;; 1 from each polynomial; since UI*PI has no constant term, | 
|---|
| 382 | ;; we just need to append the constant term at the end | 
|---|
| 383 | ;; of each termlist. | 
|---|
| 384 | (flet ((subtract-1 (p) | 
|---|
| 385 | (poly-append-term p (make-instance 'term :dimension nvars :coeff -1)))) | 
|---|
| 386 | (setf plist (mapc #'subtract-1 plist))) | 
|---|
| 387 | plist) | 
|---|
| 388 |  | 
|---|
| 389 |  | 
|---|
| 390 | (defun standard-sum (plist | 
|---|
| 391 | &aux | 
|---|
| 392 | (plist (standard-extension plist)) | 
|---|
| 393 | (nvars (poly-dimension (car plist)))) | 
|---|
| 394 | "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK]. | 
|---|
| 395 | Firstly, new K variables, U1, U2, ..., UK, are inserted into each | 
|---|
| 396 | polynomial.  Subsequently, P1, P2, ..., PK are destructively modified | 
|---|
| 397 | tantamount to replacing PI with UI*PI, and the resulting polynomials | 
|---|
| 398 | are added. Finally, 1 is subtracted.  It should be noted that the term | 
|---|
| 399 | order is not modified, which is equivalent to using a lexicographic | 
|---|
| 400 | order on the first K variables." | 
|---|
| 401 | (flet ((subtract-1 (p) | 
|---|
| 402 | (poly-append-term p (make-instance 'term :dimension nvars :coeff -1)))) | 
|---|
| 403 | (subtract-1 | 
|---|
| 404 | (make-instance | 
|---|
| 405 | 'poly | 
|---|
| 406 | :termlist (apply #'nconc (mapcar #'poly-termlist plist)))))) | 
|---|
| 407 |  | 
|---|
| 408 | (defgeneric universal-ezgcd (x y) | 
|---|
| 409 | (:documentation "Solves the diophantine system: X=C*X1, Y=C*X2, | 
|---|
| 410 | C=GCD(X,Y).  It returns C, X1 and Y1. The result may be obtained by | 
|---|
| 411 | the Euclidean algorithm.") | 
|---|
| 412 | (:method ((x integer) (y integer) | 
|---|
| 413 | &aux (c (gcd x y))) | 
|---|
| 414 | (values c (/ x c) (/ y c))) | 
|---|
| 415 | ) | 
|---|
| 416 |  | 
|---|
| 417 | (defgeneric s-polynomial (object1 object2) | 
|---|
| 418 | (:documentation "Yields the S-polynomial of OBJECT1 and OBJECT2.") | 
|---|
| 419 | (:method ((f poly) (g poly)) | 
|---|
| 420 | (let* ((lcm (universal-lcm (leading-monomial f) (leading-monomial g))) | 
|---|
| 421 | (mf (divide lcm (leading-monomial f))) | 
|---|
| 422 | (mg (divide lcm (leading-monomial g)))) | 
|---|
| 423 | (multiple-value-bind (c cf cg) | 
|---|
| 424 | (universal-ezgcd (leading-coefficient f) (leading-coefficient g)) | 
|---|
| 425 | (declare (ignore c)) | 
|---|
| 426 | (subtract | 
|---|
| 427 | (multiply cg (multiply mf f)) | 
|---|
| 428 | (multiply cf (multiply mg g))))))) | 
|---|
| 429 |  | 
|---|
| 430 | #| | 
|---|
| 431 |  | 
|---|
| 432 | (defun saturation-extension-1 (ring f p) | 
|---|
| 433 | "Calculate [F, U*P-1]. It destructively modifies F." | 
|---|
| 434 | (declare (type ring ring)) | 
|---|
| 435 | (polysaturation-extension ring f (list p))) | 
|---|
| 436 |  | 
|---|
| 437 |  | 
|---|
| 438 |  | 
|---|
| 439 |  | 
|---|
| 440 |  | 
|---|
| 441 |  | 
|---|
| 442 | (defun poly-primitive-part (ring p) | 
|---|
| 443 | "Divide polynomial P with integer coefficients by gcd of its | 
|---|
| 444 | coefficients and return the result." | 
|---|
| 445 | (declare (type ring ring) (type poly p)) | 
|---|
| 446 | (if (poly-zerop p) | 
|---|
| 447 | (values p 1) | 
|---|
| 448 | (let ((c (poly-content ring p))) | 
|---|
| 449 | (values (make-poly-from-termlist | 
|---|
| 450 | (mapcar | 
|---|
| 451 | #'(lambda (x) | 
|---|
| 452 | (make-term :monom (term-monom x) | 
|---|
| 453 | :coeff (funcall (ring-div ring) (term-coeff x) c))) | 
|---|
| 454 | (poly-termlist p)) | 
|---|
| 455 | (poly-sugar p)) | 
|---|
| 456 | c)))) | 
|---|
| 457 |  | 
|---|
| 458 | (defun poly-content (ring p) | 
|---|
| 459 | "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure | 
|---|
| 460 | to compute the greatest common divisor." | 
|---|
| 461 | (declare (type ring ring) (type poly p)) | 
|---|
| 462 | (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p))) | 
|---|
| 463 |  | 
|---|
| 464 | |# | 
|---|