close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 3648

Last change on this file since 3648 was 3648, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 16.0 KB
Line 
1;;----------------------------------------------------------------
2;; File: polynomial.lisp
3;;----------------------------------------------------------------
4;;
5;; Author: Marek Rychlik (rychlik@u.arizona.edu)
6;; Date: Thu Aug 27 09:41:24 2015
7;; Copying: (C) Marek Rychlik, 2010. All rights reserved.
8;;
9;;----------------------------------------------------------------
10;;; -*- Mode: Lisp -*-
11;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
12;;;
13;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
14;;;
15;;; This program is free software; you can redistribute it and/or modify
16;;; it under the terms of the GNU General Public License as published by
17;;; the Free Software Foundation; either version 2 of the License, or
18;;; (at your option) any later version.
19;;;
20;;; This program is distributed in the hope that it will be useful,
21;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
22;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23;;; GNU General Public License for more details.
24;;;
25;;; You should have received a copy of the GNU General Public License
26;;; along with this program; if not, write to the Free Software
27;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
28;;;
29;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
30
31(defpackage "POLYNOMIAL"
32 (:use :cl :utils :monom :copy)
33 (:export "POLY"
34 "POLY-DIMENSION"
35 "POLY-TERMLIST"
36 "POLY-TERM-ORDER"
37 "POLY-INSERT-TERM"
38 "LEADING-TERM"
39 "LEADING-COEFFICIENT"
40 "ADD-TO"
41 "ADD"
42 "SUBTRACT-FROM"
43 "SUBTRACT"
44 "CHANGE-TERM-ORDER"
45 "STANDARD-EXTENSION"
46 "STANDARD-EXTENSION-1"
47 "STANDARD-SUM"
48 "SATURATION-EXTENSION"
49 "ALIST->POLY")
50 (:documentation "Implements polynomials. A polynomial is essentially
51a mapping of monomials of the same degree to coefficients. The
52momomials are ordered according to a monomial order."))
53
54(in-package :polynomial)
55
56(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
57
58(defclass poly ()
59 ((dimension :initform nil
60 :initarg :dimension
61 :accessor poly-dimension
62 :documentation "Shared dimension of all terms, the number of variables")
63 (termlist :initform nil :initarg :termlist :accessor poly-termlist
64 :documentation "List of terms.")
65 (order :initform #'lex> :initarg :order :accessor poly-term-order
66 :documentation "Monomial/term order."))
67 (:default-initargs :dimension nil :termlist nil :order #'lex>)
68 (:documentation "A polynomial with a list of terms TERMLIST, ordered
69according to term order ORDER, which defaults to LEX>."))
70
71(defmethod print-object ((self poly) stream)
72 (print-unreadable-object (self stream :type t :identity t)
73 (with-accessors ((dimension poly-dimension)
74 (termlist poly-termlist)
75 (order poly-term-order))
76 self
77 (format stream "DIMENSION=~A TERMLIST=~A ORDER=~A"
78 dimension termlist order))))
79
80(defgeneric change-term-order (self other)
81 (:documentation "Change term order of SELF to the term order of OTHER.")
82 (:method ((self poly) (other poly))
83 (unless (eq (poly-term-order self) (poly-term-order other))
84 (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
85 (poly-term-order self) (poly-term-order other)))
86 self))
87
88(defgeneric poly-insert-term (self term)
89 (:documentation "Insert a term TERM into SELF before all other
90 terms. Order is not enforced.")
91 (:method ((self poly) (term term))
92 (cond ((null (poly-dimension self))
93 (setf (poly-dimension self) (monom-dimension term)))
94 (t (assert (= (poly-dimension self) (monom-dimension term)))))
95 (push term (poly-termlist self))
96 self))
97
98(defgeneric poly-append-term (self term)
99 (:documentation "Append a term TERM to SELF after all other terms. Order is not enforced.")
100 (:method ((self poly) (term term))
101 (cond ((null (poly-dimension self))
102 (setf (poly-dimension self) (monom-dimension term)))
103 (t (assert (= (poly-dimension self) (monom-dimension term)))))
104 (setf (cdr (last (poly-termlist self))) (list term))
105 self))
106
107(defun alist->poly (alist &aux (poly (make-instance 'poly)))
108 "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...).
109It can be used to enter simple polynomials by hand, e.g the polynomial
110in two variables, X and Y, given in standard notation as:
111
112 3*X^2*Y^3+2*Y+7
113
114can be entered as
115(ALIST->POLY '(((2 3) . 3) ((0 1) . 2) ((0 0) . 7))).
116
117NOTE: The primary use is for low-level debugging of the package."
118 (dolist (x alist poly)
119 (poly-insert-term poly (make-instance 'term :exponents (car x) :coeff (cdr x)))))
120
121(defmethod update-instance-for-different-class :after ((old monom) (new poly) &key)
122 "Converts OLD of class MONOM to a NEW of class POLY, by making it into a 1-element TERMLIST."
123 (reinitialize-instance new
124 :dimension (monom-dimension old)
125 :termlist (list (cons old 1))))
126
127(defmethod universal-equalp ((self poly) (other poly))
128 "Implements equality of polynomials."
129 (and (eql (poly-dimension self) (poly-dimension other))
130 (every #'universal-equalp (poly-termlist self) (poly-termlist other))
131 (eq (poly-term-order self) (poly-term-order other))))
132
133(defgeneric leading-term (object)
134 (:method ((self poly))
135 (car (poly-termlist self)))
136 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
137
138(defgeneric second-leading-term (object)
139 (:method ((self poly))
140 (cadar (poly-termlist self)))
141 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
142
143(defgeneric leading-coefficient (object)
144 (:method ((self poly))
145 (term-coeff (leading-term self)))
146 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
147
148
149(defgeneric second-leading-coefficient (object)
150 (:method ((self poly))
151 (term-coeff (second-leading-term self)))
152 (:documentation "The second leading coefficient of a polynomial. It
153 signals error for a polynomial with at most one term."))
154
155(defmethod universal-zerop ((self poly))
156 "Return T iff SELF is a zero polynomial."
157 (null (poly-termlist self)))
158
159(defgeneric poly-length (self)
160 (:documentation "Return the number of terms.")
161 (:method ((self poly))
162 (length (poly-termlist self))))
163
164(defmethod multiply-by ((self poly) (other monom))
165 "Multiply a polynomial SELF by OTHER."
166 (mapc #'(lambda (term) (multiply-by term other))
167 (poly-termlist self))
168 self)
169
170(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
171 "Return an expression which will efficiently adds/subtracts two
172polynomials, P and Q. The addition/subtraction of coefficients is
173performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
174is supplied, it is used to negate the coefficients of Q which do not
175have a corresponding coefficient in P. The code implements an
176efficient algorithm to add two polynomials represented as sorted lists
177of terms. The code destroys both arguments, reusing the terms to build
178the result."
179 `(macrolet ((lc (x) `(term-coeff (car ,x))))
180 (do ((p ,p)
181 (q ,q)
182 r)
183 ((or (endp p) (endp q))
184 ;; NOTE: R contains the result in reverse order. Can it
185 ;; be more efficient to produce the terms in correct order?
186 (unless (endp q)
187 ;; Upon subtraction, we must change the sign of
188 ;; all coefficients in q
189 ,@(when uminus-fn
190 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
191 (setf r (nreconc r q)))
192 r)
193 (multiple-value-bind
194 (greater-p equal-p)
195 (funcall ,order-fn (car p) (car q))
196 (cond
197 (greater-p
198 (rotatef (cdr p) r p)
199 )
200 (equal-p
201 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
202 (cond
203 ((universal-zerop s)
204 (setf p (cdr p))
205 )
206 (t
207 (setf (lc p) s)
208 (rotatef (cdr p) r p))))
209 (setf q (cdr q))
210 )
211 (t
212 ;;Negate the term of Q if UMINUS provided, signallig
213 ;;that we are doing subtraction
214 ,(when uminus-fn
215 `(setf (lc q) (funcall ,uminus-fn (lc q))))
216 (rotatef (cdr q) r q)))))))
217
218
219(defgeneric add-to (self other)
220 (:documentation "Add OTHER to SELF.")
221 (:method ((self number) (other number))
222 (+ self other)))
223
224(defgeneric subtract-from (self other)
225 (:documentation "Subtract OTHER from SELF.")
226 (:method ((self number) (other number))
227 (- self other)))
228
229
230(defmacro def-add/subtract-method (add/subtract-method-name
231 uminus-method-name
232 &optional
233 (doc-string nil doc-string-supplied-p))
234 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
235 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
236 ,@(when doc-string-supplied-p `(,doc-string))
237 ;; Ensure orders are compatible
238 (change-term-order other self)
239 (setf (poly-termlist self) (fast-add/subtract
240 (poly-termlist self) (poly-termlist other)
241 (poly-term-order self)
242 #',add/subtract-method-name
243 ,(when uminus-method-name `(function ,uminus-method-name))))
244 self))
245
246(eval-when (:compile-toplevel :load-toplevel :execute)
247
248 (def-add/subtract-method add-to nil
249 "Adds to polynomial SELF another polynomial OTHER.
250This operation destructively modifies both polynomials.
251The result is stored in SELF. This implementation does
252no consing, entirely reusing the sells of SELF and OTHER.")
253
254 (def-add/subtract-method subtract-from unary-minus
255 "Subtracts from polynomial SELF another polynomial OTHER.
256This operation destructively modifies both polynomials.
257The result is stored in SELF. This implementation does
258no consing, entirely reusing the sells of SELF and OTHER.")
259 )
260
261(defmethod unary-minus ((self poly))
262 "Destructively modifies the coefficients of the polynomial SELF,
263by changing their sign."
264 (mapc #'unary-minus (poly-termlist self))
265 self)
266
267(defun add-termlists (p q order-fn)
268 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
269 (fast-add/subtract p q order-fn #'add-to nil))
270
271(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
272 &optional (reverse-arg-order-P nil))
273 "Multiplies term TERM by a list of term, TERMLIST.
274Takes into accound divisors of zero in the ring, by
275deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
276is T, change the order of arguments; this may be important
277if we extend the package to non-commutative rings."
278 `(mapcan #'(lambda (other-term)
279 (let ((prod (multiply
280 ,@(cond
281 (reverse-arg-order-p
282 `(other-term ,term))
283 (t
284 `(,term other-term))))))
285 (cond
286 ((universal-zerop prod) nil)
287 (t (list prod)))))
288 ,termlist))
289
290(defun multiply-termlists (p q order-fn)
291 "A version of polynomial multiplication, operating
292directly on termlists."
293 (cond
294 ((or (endp p) (endp q))
295 ;;p or q is 0 (represented by NIL)
296 nil)
297 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
298 ((endp (cdr p))
299 (multiply-term-by-termlist-dropping-zeros (car p) q))
300 ((endp (cdr q))
301 (multiply-term-by-termlist-dropping-zeros (car q) p t))
302 (t
303 (cons (multiply (car p) (car q))
304 (add-termlists
305 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
306 (multiply-termlists (cdr p) q order-fn)
307 order-fn)))))
308
309(defmethod multiply-by ((self poly) (other poly))
310 (change-term-order other self)
311 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
312 (poly-termlist other)
313 (poly-term-order self)))
314 self)
315
316(defun add (object1 object2)
317 "Non-destructively add POLY1 by POLY2."
318 (add-to (copy-instance object1) (copy-instance object2)))
319
320(defun subtract (minuend &rest subtrahends)
321 "Non-destructively subtract MINUEND and SUBTRAHENDS."
322 (subtract-from (copy-instance minuend) (reduce #'add subtrahends)))
323
324(defmethod left-tensor-product-by ((self poly) (other monom))
325 (setf (poly-termlist self)
326 (mapcan #'(lambda (term)
327 (let ((prod (left-tensor-product-by term other)))
328 (cond
329 ((universal-zerop prod) nil)
330 (t (list prod)))))
331 (poly-termlist self)))
332 (incf (poly-dimension self) (monom-dimension other))
333 self)
334
335(defmethod right-tensor-product-by ((self poly) (other monom))
336 (setf (poly-termlist self)
337 (mapcan #'(lambda (term)
338 (let ((prod (right-tensor-product-by term other)))
339 (cond
340 ((universal-zerop prod) nil)
341 (t (list prod)))))
342 (poly-termlist self)))
343 (incf (poly-dimension self) (monom-dimension other))
344 self)
345
346
347(defun standard-extension (plist &aux (k (length plist)) (i 0))
348 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
349is a list of polynomials. Destructively modifies PLIST elements."
350 (mapc #'(lambda (poly)
351 (left-tensor-product-by
352 poly
353 (prog1
354 (make-monom-variable k i)
355 (incf i))))
356 plist))
357
358(defun standard-extension-1 (plist
359 &aux
360 (plist (standard-extension plist))
361 (nvars (poly-dimension (car plist))))
362 "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
363Firstly, new K variables U1, U2, ..., UK, are inserted into each
364polynomial. Subsequently, P1, P2, ..., PK are destructively modified
365tantamount to replacing PI with UI*PI-1. It assumes that all
366polynomials have the same dimension, and only the first polynomial
367is examined to determine this dimension."
368 ;; Implementation note: we use STANDARD-EXTENSION and then subtract
369 ;; 1 from each polynomial; since UI*PI has no constant term,
370 ;; we just need to append the constant term at the end
371 ;; of each termlist.
372 (flet ((subtract-1 (p)
373 (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
374 (setf plist (mapc #'subtract-1 plist)))
375 plist)
376
377
378(defun standard-sum (plist
379 &aux
380 (plist (standard-extension plist))
381 (nvars (poly-dimension (car plist))))
382 "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
383Firstly, new K variables, U1, U2, ..., UK, are inserted into each
384polynomial. Subsequently, P1, P2, ..., PK are destructively modified
385tantamount to replacing PI with UI*PI, and the resulting polynomials
386are added. Finally, 1 is subtracted. It should be noted that the term
387order is not modified, which is equivalent to using a lexicographic
388order on the first K variables."
389 (flet ((subtract-1 (p)
390 (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
391 (subtract-1
392 (make-instance
393 'poly
394 :termlist (apply #'nconc (mapcar #'poly-termlist plist))))))
395
396#|
397
398(defun saturation-extension-1 (ring f p)
399 "Calculate [F, U*P-1]. It destructively modifies F."
400 (declare (type ring ring))
401 (polysaturation-extension ring f (list p)))
402
403
404
405
406(defun spoly (ring-and-order f g
407 &aux
408 (ring (ro-ring ring-and-order)))
409 "It yields the S-polynomial of polynomials F and G."
410 (declare (type ring-and-order ring-and-order) (type poly f g))
411 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
412 (mf (monom-div lcm (poly-lm f)))
413 (mg (monom-div lcm (poly-lm g))))
414 (declare (type monom mf mg))
415 (multiple-value-bind (c cf cg)
416 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
417 (declare (ignore c))
418 (poly-sub
419 ring-and-order
420 (scalar-times-poly ring cg (monom-times-poly mf f))
421 (scalar-times-poly ring cf (monom-times-poly mg g))))))
422
423
424(defun poly-primitive-part (ring p)
425 "Divide polynomial P with integer coefficients by gcd of its
426coefficients and return the result."
427 (declare (type ring ring) (type poly p))
428 (if (poly-zerop p)
429 (values p 1)
430 (let ((c (poly-content ring p)))
431 (values (make-poly-from-termlist
432 (mapcar
433 #'(lambda (x)
434 (make-term :monom (term-monom x)
435 :coeff (funcall (ring-div ring) (term-coeff x) c)))
436 (poly-termlist p))
437 (poly-sugar p))
438 c))))
439
440(defun poly-content (ring p)
441 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
442to compute the greatest common divisor."
443 (declare (type ring ring) (type poly p))
444 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
445
446|#
Note: See TracBrowser for help on using the repository browser.