close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 3508

Last change on this file since 3508 was 3507, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 16.1 KB
Line 
1;;----------------------------------------------------------------
2;; File: polynomial.lisp
3;;----------------------------------------------------------------
4;;
5;; Author: Marek Rychlik (rychlik@u.arizona.edu)
6;; Date: Thu Aug 27 09:41:24 2015
7;; Copying: (C) Marek Rychlik, 2010. All rights reserved.
8;;
9;;----------------------------------------------------------------
10;;; -*- Mode: Lisp -*-
11;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
12;;;
13;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
14;;;
15;;; This program is free software; you can redistribute it and/or modify
16;;; it under the terms of the GNU General Public License as published by
17;;; the Free Software Foundation; either version 2 of the License, or
18;;; (at your option) any later version.
19;;;
20;;; This program is distributed in the hope that it will be useful,
21;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
22;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23;;; GNU General Public License for more details.
24;;;
25;;; You should have received a copy of the GNU General Public License
26;;; along with this program; if not, write to the Free Software
27;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
28;;;
29;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
30
31(defpackage "POLYNOMIAL"
32 (:use :cl :utils :monom)
33 (:export "POLY"
34 "POLY-DIMENSION"
35 "POLY-TERMLIST"
36 "POLY-TERM-ORDER"
37 "CHANGE-TERM-ORDER"
38 "STANDARD-EXTENSION"
39 "STANDARD-EXTENSION-1"
40 "STANDARD-SUM"
41 "SATURATION-EXTENSION"
42 "ALIST->POLY")
43 (:documentation "Implements polynomials. A polynomial is essentially
44a mapping of monomials of the same degree to coefficients. The
45momomials are ordered according to a monomial order."))
46
47(in-package :polynomial)
48
49(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
50
51(defclass poly ()
52 ((dimension :initform nil
53 :initarg :dimension
54 :accessor poly-dimension
55 :documentation "Shared dimension of all terms, the number of variables")
56 (termlist :initform nil :initarg :termlist :accessor poly-termlist
57 :documentation "List of terms.")
58 (order :initform #'lex> :initarg :order :accessor poly-term-order
59 :documentation "Monomial/term order."))
60 (:default-initargs :dimension nil :termlist nil :order #'lex>)
61 (:documentation "A polynomial with a list of terms TERMLIST, ordered
62according to term order ORDER, which defaults to LEX>."))
63
64(defmethod print-object ((self poly) stream)
65 (print-unreadable-object (self stream :type t :identity t)
66 (with-accessors ((dimension poly-dimension)
67 (termlist poly-termlist)
68 (order poly-term-order))
69 self
70 (format stream "DIMENSION=~A TERMLIST=~A ORDER=~A"
71 dimension termlist order))))
72
73(defgeneric change-term-order (self other)
74 (:documentation "Change term order of SELF to the term order of OTHER.")
75 (:method ((self poly) (other poly))
76 (unless (eq (poly-term-order self) (poly-term-order other))
77 (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
78 (poly-term-order self) (poly-term-order other)))
79 self))
80
81(defun alist->poly (alist &aux (poly (make-instance 'poly)))
82 "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...).
83It can be used to enter simple polynomials by hand, e.g the polynomial
84in two variables, X and Y, given in standard notation as:
85
86 3*X^2*Y^3+2*Y+7
87
88can be entered as
89(ALIST->POLY '(((2 3) . 3) ((0 1) . 2) ((0 0) . 7))).
90
91NOTE: The primary use is for low-level debugging of the package."
92 (dolist (x alist poly)
93 (poly-insert-term poly (make-instance 'monom :exponents (car x)) (cdr x))))
94
95(defmethod update-instance-for-different-class :after ((old monom) (new poly) &key)
96 "Converts OLD of class MONOM to a NEW of class POLY, by making it into a 1-element TERMLIST."
97 (reinitialize-instance new
98 :dimension (monom-dimension old)
99 :termlist (list (cons monom 1))))
100
101(defmethod r-equalp ((self poly) (other poly))
102 "POLY instances are R-EQUALP if they have the same
103order and if all terms are R-EQUALP."
104 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
105 (eq (poly-term-order self) (poly-term-order other))))
106
107(defgeneric poly-insert-term (self monom coeff)
108 (:method ((self poly) (monom monom) coeff)
109 (cond ((null (poly-dimension self))
110 (setf (poly-dimension self) (monom-dimension monom)))
111 (t (assert (= (poly-dimension self) (monom-dimension monom)))))
112 (push (cons monom coeff) (poly-termlist self))
113 self))
114
115(defgeneric poly-append-term (self monom coeff)
116 (:method ((self poly) (monom monom) coeff)
117 (cond ((null (poly-dimension self))
118 (setf (poly-dimension self) (monom-dimension monom)))
119 (t (assert (= (poly-dimension self) (monom-dimension monom)))))
120 (setf (cdr (last (poly-termlist self))) (list (cons monom coeff)))
121 self))
122
123;; Leading term
124(defgeneric leading-term (object)
125 (:method ((self poly))
126 (car (poly-termlist self)))
127 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
128
129;; Second term
130(defgeneric second-leading-term (object)
131 (:method ((self poly))
132 (cadar (poly-termlist self)))
133 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
134
135;; Leading coefficient
136(defgeneric leading-coefficient (object)
137 (:method ((self poly))
138 (scalar-coeff (leading-term self)))
139 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
140
141;; Second coefficient
142(defgeneric second-leading-coefficient (object)
143 (:method ((self poly))
144 (scalar-coeff (second-leading-term self)))
145 (:documentation "The second leading coefficient of a polynomial. It
146 signals error for a polynomial with at most one term."))
147
148;; Testing for a zero polynomial
149(defmethod r-zerop ((self poly))
150 (null (poly-termlist self)))
151
152;; The number of terms
153(defmethod r-length ((self poly))
154 (length (poly-termlist self)))
155
156(defmethod multiply-by ((self poly) (other monom))
157 (mapc #'(lambda (term) (multiply-by term other))
158 (poly-termlist self))
159 self)
160
161(defmethod multiply-by ((self poly) other)
162 (mapc #'(lambda (term) (multiply-by term other))
163 (poly-termlist self))
164 self)
165
166
167(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
168 "Return an expression which will efficiently adds/subtracts two
169polynomials, P and Q. The addition/subtraction of coefficients is
170performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
171is supplied, it is used to negate the coefficients of Q which do not
172have a corresponding coefficient in P. The code implements an
173efficient algorithm to add two polynomials represented as sorted lists
174of terms. The code destroys both arguments, reusing the terms to build
175the result."
176 `(macrolet ((lc (x) `(scalar-coeff (car ,x))))
177 (do ((p ,p)
178 (q ,q)
179 r)
180 ((or (endp p) (endp q))
181 ;; NOTE: R contains the result in reverse order. Can it
182 ;; be more efficient to produce the terms in correct order?
183 (unless (endp q)
184 ;; Upon subtraction, we must change the sign of
185 ;; all coefficients in q
186 ,@(when uminus-fn
187 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
188 (setf r (nreconc r q)))
189 r)
190 (multiple-value-bind
191 (greater-p equal-p)
192 (funcall ,order-fn (car p) (car q))
193 (cond
194 (greater-p
195 (rotatef (cdr p) r p)
196 )
197 (equal-p
198 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
199 (cond
200 ((r-zerop s)
201 (setf p (cdr p))
202 )
203 (t
204 (setf (lc p) s)
205 (rotatef (cdr p) r p))))
206 (setf q (cdr q))
207 )
208 (t
209 ;;Negate the term of Q if UMINUS provided, signallig
210 ;;that we are doing subtraction
211 ,(when uminus-fn
212 `(setf (lc q) (funcall ,uminus-fn (lc q))))
213 (rotatef (cdr q) r q)))))))
214
215
216(defmacro def-add/subtract-method (add/subtract-method-name
217 uminus-method-name
218 &optional
219 (doc-string nil doc-string-supplied-p))
220 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
221 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
222 ,@(when doc-string-supplied-p `(,doc-string))
223 ;; Ensure orders are compatible
224 (change-term-order other self)
225 (setf (poly-termlist self) (fast-add/subtract
226 (poly-termlist self) (poly-termlist other)
227 (poly-term-order self)
228 #',add/subtract-method-name
229 ,(when uminus-method-name `(function ,uminus-method-name))))
230 self))
231
232(eval-when (:compile-toplevel :load-toplevel :execute)
233
234 (def-add/subtract-method add-to nil
235 "Adds to polynomial SELF another polynomial OTHER.
236This operation destructively modifies both polynomials.
237The result is stored in SELF. This implementation does
238no consing, entirely reusing the sells of SELF and OTHER.")
239
240 (def-add/subtract-method subtract-from unary-minus
241 "Subtracts from polynomial SELF another polynomial OTHER.
242This operation destructively modifies both polynomials.
243The result is stored in SELF. This implementation does
244no consing, entirely reusing the sells of SELF and OTHER.")
245 )
246
247(defmethod unary-minus ((self poly))
248 "Destructively modifies the coefficients of the polynomial SELF,
249by changing their sign."
250 (mapc #'unary-minus (poly-termlist self))
251 self)
252
253(defun add-termlists (p q order-fn)
254 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
255 (fast-add/subtract p q order-fn #'add-to nil))
256
257(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
258 &optional (reverse-arg-order-P nil))
259 "Multiplies term TERM by a list of term, TERMLIST.
260Takes into accound divisors of zero in the ring, by
261deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
262is T, change the order of arguments; this may be important
263if we extend the package to non-commutative rings."
264 `(mapcan #'(lambda (other-term)
265 (let ((prod (r*
266 ,@(cond
267 (reverse-arg-order-p
268 `(other-term ,term))
269 (t
270 `(,term other-term))))))
271 (cond
272 ((r-zerop prod) nil)
273 (t (list prod)))))
274 ,termlist))
275
276(defun multiply-termlists (p q order-fn)
277 "A version of polynomial multiplication, operating
278directly on termlists."
279 (cond
280 ((or (endp p) (endp q))
281 ;;p or q is 0 (represented by NIL)
282 nil)
283 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
284 ((endp (cdr p))
285 (multiply-term-by-termlist-dropping-zeros (car p) q))
286 ((endp (cdr q))
287 (multiply-term-by-termlist-dropping-zeros (car q) p t))
288 (t
289 (cons (r* (car p) (car q))
290 (add-termlists
291 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
292 (multiply-termlists (cdr p) q order-fn)
293 order-fn)))))
294
295(defmethod multiply-by ((self poly) (other poly))
296 (change-term-order other self)
297 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
298 (poly-termlist other)
299 (poly-term-order self)))
300 self)
301
302(defmethod r+ ((poly1 poly) poly2)
303 "Non-destructively add POLY1 by POLY2."
304 (add-to (copy-instance POLY1) (change-class (copy-instance POLY2) 'poly)))
305
306(defmethod r- ((minuend poly) &rest subtrahends)
307 "Non-destructively subtract MINUEND and SUBTRAHENDS."
308 (subtract-from (copy-instance minuend)
309 (change-class (reduce #'r+ subtrahends) 'poly)))
310
311(defmethod r+ ((poly1 monom) poly2)
312 "Non-destructively add POLY1 by POLY2."
313 (add-to (change-class (copy-instance poly1) 'poly)
314 (change-class (copy-instance poly2) 'poly)))
315
316(defmethod r- ((minuend monom) &rest subtrahends)
317 "Non-destructively subtract MINUEND and SUBTRAHENDS."
318 (subtract-from (change-class (copy-instance minuend) 'poly)
319 (change-class (reduce #'r+ subtrahends) 'poly)))
320
321(defmethod r* ((poly1 poly) (poly2 poly))
322 "Non-destructively multiply POLY1 by POLY2."
323 (multiply-by (copy-instance poly1) (copy-instance poly2)))
324
325(defmethod left-tensor-product-by ((self poly) (other monom))
326 (setf (poly-termlist self)
327 (mapcan #'(lambda (term)
328 (let ((prod (left-tensor-product-by term other)))
329 (cond
330 ((r-zerop prod) nil)
331 (t (list prod)))))
332 (poly-termlist self)))
333 (incf (poly-dimension self) (monom-dimension other))
334 self)
335
336(defmethod right-tensor-product-by ((self poly) (other monom))
337 (setf (poly-termlist self)
338 (mapcan #'(lambda (term)
339 (let ((prod (right-tensor-product-by term other)))
340 (cond
341 ((r-zerop prod) nil)
342 (t (list prod)))))
343 (poly-termlist self)))
344 (incf (poly-dimension self) (monom-dimension other))
345 self)
346
347
348(defun standard-extension (plist &aux (k (length plist)) (i 0))
349 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
350is a list of polynomials. Destructively modifies PLIST elements."
351 (mapc #'(lambda (poly)
352 (left-tensor-product-by
353 poly
354 (prog1
355 (make-monom-variable k i)
356 (incf i))))
357 plist))
358
359(defun standard-extension-1 (plist
360 &aux
361 (plist (standard-extension plist))
362 (nvars (poly-dimension (car plist))))
363 "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
364Firstly, new K variables U1, U2, ..., UK, are inserted into each
365polynomial. Subsequently, P1, P2, ..., PK are destructively modified
366tantamount to replacing PI with UI*PI-1. It assumes that all
367polynomials have the same dimension, and only the first polynomial
368is examined to determine this dimension."
369 ;; Implementation note: we use STANDARD-EXTENSION and then subtract
370 ;; 1 from each polynomial; since UI*PI has no constant term,
371 ;; we just need to append the constant term at the end
372 ;; of each termlist.
373 (flet ((subtract-1 (p)
374 (poly-append-term p (make-instance 'monom :dimension nvars) -1)))
375 (setf plist (mapc #'subtract-1 plist)))
376 plist)
377
378
379(defun standard-sum (plist
380 &aux
381 (plist (standard-extension plist))
382 (nvars (poly-dimension (car plist))))
383 "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
384Firstly, new K variables, U1, U2, ..., UK, are inserted into each
385polynomial. Subsequently, P1, P2, ..., PK are destructively modified
386tantamount to replacing PI with UI*PI, and the resulting polynomials
387are added. Finally, 1 is subtracted. It should be noted that the term
388order is not modified, which is equivalent to using a lexicographic
389order on the first K variables."
390 (flet ((subtract-1 (p)
391 (poly-append-term p (make-instance 'monom :dimension nvars) -1)))
392 (subtract-1
393 (make-instance
394 'poly
395 :termlist (apply #'nconc (mapcar #'poly-termlist plist))))))
396
397#|
398
399(defun saturation-extension-1 (ring f p)
400 "Calculate [F, U*P-1]. It destructively modifies F."
401 (declare (type ring ring))
402 (polysaturation-extension ring f (list p)))
403
404
405
406
407(defun spoly (ring-and-order f g
408 &aux
409 (ring (ro-ring ring-and-order)))
410 "It yields the S-polynomial of polynomials F and G."
411 (declare (type ring-and-order ring-and-order) (type poly f g))
412 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
413 (mf (monom-div lcm (poly-lm f)))
414 (mg (monom-div lcm (poly-lm g))))
415 (declare (type monom mf mg))
416 (multiple-value-bind (c cf cg)
417 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
418 (declare (ignore c))
419 (poly-sub
420 ring-and-order
421 (scalar-times-poly ring cg (monom-times-poly mf f))
422 (scalar-times-poly ring cf (monom-times-poly mg g))))))
423
424
425(defun poly-primitive-part (ring p)
426 "Divide polynomial P with integer coefficients by gcd of its
427coefficients and return the result."
428 (declare (type ring ring) (type poly p))
429 (if (poly-zerop p)
430 (values p 1)
431 (let ((c (poly-content ring p)))
432 (values (make-poly-from-termlist
433 (mapcar
434 #'(lambda (x)
435 (make-term :monom (term-monom x)
436 :coeff (funcall (ring-div ring) (term-coeff x) c)))
437 (poly-termlist p))
438 (poly-sugar p))
439 c))))
440
441(defun poly-content (ring p)
442 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
443to compute the greatest common divisor."
444 (declare (type ring ring) (type poly p))
445 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
446
447|#
Note: See TracBrowser for help on using the repository browser.