close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 3087

Last change on this file since 3087 was 3087, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 19.8 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :utils :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER"
27 "CHANGE-TERM-ORDER"
28 "SATURATION-EXTENSION")
29 (:documentation "Implements polynomials"))
30
31(in-package :polynomial)
32
33(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
34
35(defclass poly ()
36 ((termlist :initarg :termlist :accessor poly-termlist
37 :documentation "List of terms.")
38 (order :initarg :order :accessor poly-term-order
39 :documentation "Monomial/term order."))
40 (:default-initargs :termlist nil :order #'lex>)
41 (:documentation "A polynomial with a list of terms TERMLIST, ordered
42according to term order ORDER, which defaults to LEX>."))
43
44(defmethod print-object ((self poly) stream)
45 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
46 (poly-termlist self)
47 (poly-term-order self)))
48
49(defgeneric change-term-order (self other)
50 (:documentation "Change term order of SELF to the term order of OTHER.")
51 (:method ((self poly) (other poly))
52 (unless (eq (poly-term-order self) (poly-term-order other))
53 (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
54 (poly-term-order self) (poly-term-order other)))
55 self))
56
57(defmethod r-equalp ((self poly) (other poly))
58 "POLY instances are R-EQUALP if they have the same
59order and if all terms are R-EQUALP."
60 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
61 (eq (poly-term-order self) (poly-term-order other))))
62
63(defmethod insert-item ((self poly) (item term))
64 (push item (poly-termlist self))
65 self)
66
67(defmethod append-item ((self poly) (item term))
68 (setf (cdr (last (poly-termlist self))) (list item))
69 self)
70
71;; Leading term
72(defgeneric leading-term (object)
73 (:method ((self poly))
74 (car (poly-termlist self)))
75 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
76
77;; Second term
78(defgeneric second-leading-term (object)
79 (:method ((self poly))
80 (cadar (poly-termlist self)))
81 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
82
83;; Leading coefficient
84(defgeneric leading-coefficient (object)
85 (:method ((self poly))
86 (r-coeff (leading-term self)))
87 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
88
89;; Second coefficient
90(defgeneric second-leading-coefficient (object)
91 (:method ((self poly))
92 (r-coeff (second-leading-term self)))
93 (:documentation "The second leading coefficient of a polynomial. It
94 signals error for a polynomial with at most one term."))
95
96;; Testing for a zero polynomial
97(defmethod r-zerop ((self poly))
98 (null (poly-termlist self)))
99
100;; The number of terms
101(defmethod r-length ((self poly))
102 (length (poly-termlist self)))
103
104(defmethod multiply-by ((self poly) (other monom))
105 (mapc #'(lambda (term) (multiply-by term other))
106 (poly-termlist self))
107 self)
108
109(defmethod multiply-by ((self poly) (other scalar))
110 (mapc #'(lambda (term) (multiply-by term other))
111 (poly-termlist self))
112 self)
113
114
115(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
116 "Return an expression which will efficiently adds/subtracts two
117polynomials, P and Q. The addition/subtraction of coefficients is
118performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
119is supplied, it is used to negate the coefficients of Q which do not
120have a corresponding coefficient in P. The code implements an
121efficient algorithm to add two polynomials represented as sorted lists
122of terms. The code destroys both arguments, reusing the terms to build
123the result."
124 `(macrolet ((lc (x) `(r-coeff (car ,x))))
125 (do ((p ,p)
126 (q ,q)
127 r)
128 ((or (endp p) (endp q))
129 ;; NOTE: R contains the result in reverse order. Can it
130 ;; be more efficient to produce the terms in correct order?
131 (unless (endp q)
132 ;; Upon subtraction, we must change the sign of
133 ;; all coefficients in q
134 ,@(when uminus-fn
135 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
136 (setf r (nreconc r q)))
137 r)
138 (multiple-value-bind
139 (greater-p equal-p)
140 (funcall ,order-fn (car p) (car q))
141 (cond
142 (greater-p
143 (rotatef (cdr p) r p)
144 )
145 (equal-p
146 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
147 (cond
148 ((r-zerop s)
149 (setf p (cdr p))
150 )
151 (t
152 (setf (lc p) s)
153 (rotatef (cdr p) r p))))
154 (setf q (cdr q))
155 )
156 (t
157 ;;Negate the term of Q if UMINUS provided, signallig
158 ;;that we are doing subtraction
159 ,(when uminus-fn
160 `(setf (lc q) (funcall ,uminus-fn (lc q))))
161 (rotatef (cdr q) r q)))))))
162
163
164(defmacro def-add/subtract-method (add/subtract-method-name
165 uminus-method-name
166 &optional
167 (doc-string nil doc-string-supplied-p))
168 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
169 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
170 ,@(when doc-string-supplied-p `(,doc-string))
171 ;; Ensure orders are compatible
172 (change-term-order other self)
173 (setf (poly-termlist self) (fast-add/subtract
174 (poly-termlist self) (poly-termlist other)
175 (poly-term-order self)
176 #',add/subtract-method-name
177 ,(when uminus-method-name `(function ,uminus-method-name))))
178 self))
179
180(eval-when (:compile-toplevel :load-toplevel :execute)
181
182 (def-add/subtract-method add-to nil
183 "Adds to polynomial SELF another polynomial OTHER.
184This operation destructively modifies both polynomials.
185The result is stored in SELF. This implementation does
186no consing, entirely reusing the sells of SELF and OTHER.")
187
188 (def-add/subtract-method subtract-from unary-minus
189 "Subtracts from polynomial SELF another polynomial OTHER.
190This operation destructively modifies both polynomials.
191The result is stored in SELF. This implementation does
192no consing, entirely reusing the sells of SELF and OTHER.")
193
194 )
195
196
197
198(defmethod unary-minus ((self poly))
199 "Destructively modifies the coefficients of the polynomial SELF,
200by changing their sign."
201 (mapc #'unary-minus (poly-termlist self))
202 self)
203
204(defun add-termlists (p q order-fn)
205 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
206 (fast-add/subtract p q order-fn #'add-to nil))
207
208(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
209 &optional (reverse-arg-order-P nil))
210 "Multiplies term TERM by a list of term, TERMLIST.
211Takes into accound divisors of zero in the ring, by
212deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
213is T, change the order of arguments; this may be important
214if we extend the package to non-commutative rings."
215 `(mapcan #'(lambda (other-term)
216 (let ((prod (r*
217 ,@(cond
218 (reverse-arg-order-p
219 `(other-term ,term))
220 (t
221 `(,term other-term))))))
222 (cond
223 ((r-zerop prod) nil)
224 (t (list prod)))))
225 ,termlist))
226
227(defun multiply-termlists (p q order-fn)
228 (cond
229 ((or (endp p) (endp q))
230 ;;p or q is 0 (represented by NIL)
231 nil)
232 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
233 ((endp (cdr p))
234 (multiply-term-by-termlist-dropping-zeros (car p) q))
235 ((endp (cdr q))
236 (multiply-term-by-termlist-dropping-zeros (car q) p t))
237 (t
238 (cons (r* (car p) (car q))
239 (add-termlists
240 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
241 (multiply-termlists (cdr p) q order-fn)
242 order-fn)))))
243
244(defmethod multiply-by ((self poly) (other poly))
245 (change-term-order other self)
246 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
247 (poly-termlist other)
248 (poly-term-order self)))
249 self)
250
251(defmethod r* ((poly1 poly) (poly2 poly))
252 "Non-destructively multiply POLY1 by POLY2."
253 (multiply-by (copy-instance POLY1) (copy-instance POLY2)))
254
255(defmethod left-tensor-product-by ((self poly) (other term))
256 (setf (poly-termlist self)
257 (mapcan #'(lambda (term)
258 (let ((prod (left-tensor-product-by term other)))
259 (cond
260 ((r-zerop prod) nil)
261 (t (list prod)))))
262 (poly-termlist self)))
263 self)
264
265(defmethod right-tensor-product-by ((self poly) (other term))
266 (setf (poly-termlist self)
267 (mapcan #'(lambda (term)
268 (let ((prod (right-tensor-product-by term other)))
269 (cond
270 ((r-zerop prod) nil)
271 (t (list prod)))))
272 (poly-termlist self)))
273 self)
274
275(defmethod left-tensor-product-by ((self poly) (other monom))
276 (setf (poly-termlist self)
277 (mapcan #'(lambda (term)
278 (let ((prod (left-tensor-product-by term other)))
279 (cond
280 ((r-zerop prod) nil)
281 (t (list prod)))))
282 (poly-termlist self)))
283 self)
284
285(defmethod right-tensor-product-by ((self poly) (other monom))
286 (setf (poly-termlist self)
287 (mapcan #'(lambda (term)
288 (let ((prod (right-tensor-product-by term other)))
289 (cond
290 ((r-zerop prod) nil)
291 (t (list prod)))))
292 (poly-termlist self)))
293 self)
294
295
296(defun standard-extension (plist &aux (k (length plist)) (i 0))
297 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
298is a list of polynomials. Destructively modifies PLIST elements."
299 (mapc #'(lambda (poly)
300 (left-tensor-product-by
301 poly
302 (prog1
303 (make-monom-variable k i)
304 (incf i))))
305 plist))
306
307(defmethod poly-dimension ((poly poly))
308 (cond ((r-zerop poly) -1)
309 (t (monom-dimension (leading-term poly)))))
310
311(defun standard-extension-1 (plist
312 &aux
313 (k (length plist))
314 (plist (poly-standard-extension plist))
315 (nvars (poly-dimension (car plist))))
316 "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
317Firstly, new K variables U1, U2, ..., UK, are inserted into each
318polynomial. Subsequently, P1, P2, ..., PK are destructively modified
319tantamount to replacing PI with UI*PI-1."
320 (flet ((subtract-1 (p)
321 (append-item p (make-instance 'term :coeff -1 :dimension (+ k nvars)))))
322 (setf plist (mapc #'subtract-1 plist)))
323 plist)
324
325
326(defun standard-sum (F plist
327 &aux
328 (k (length plist))
329 (d (+ k (monom-dimension (poly-lt (car plist)))))
330 ;; Add k variables to f
331 (f (poly-list-add-variables f k))
332 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
333 (plist (apply #'nconc (poly-standard-extension plist))))
334 "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
335Firstly, new K variables, U1, U2, ..., UK, are inserted into each
336polynomial. Subsequently, P1, P2, ..., PK are destructively modified
337tantamount to replacing PI with UI*PI, and the resulting polynomials
338are added. It should be noted that the term order is not affected,
339which is equivalent to using a lexicographic order."
340 (declare (type ring ring))
341 (setf (cdr (last (poly-termlist plist)))
342 ;; Add -1 as the last term
343 (list (make-term :monom (make-monom :dimension d)
344 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
345 (append f (list plist)))
346
347#|
348
349
350(defun saturation-extension-1 (ring f p)
351 "Calculate [F, U*P-1]. It destructively modifies F."
352 (declare (type ring ring))
353 (polysaturation-extension ring f (list p)))
354
355;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
356;;
357;; Evaluation of polynomial (prefix) expressions
358;;
359;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
360
361(defun coerce-coeff (ring expr vars)
362 "Coerce an element of the coefficient ring to a constant polynomial."
363 ;; Modular arithmetic handler by rat
364 (declare (type ring ring))
365 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
366 :coeff (funcall (ring-parse ring) expr)))
367 0))
368
369(defun poly-eval (expr vars
370 &optional
371 (ring +ring-of-integers+)
372 (order #'lex>)
373 (list-marker :[)
374 &aux
375 (ring-and-order (make-ring-and-order :ring ring :order order)))
376 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
377variables VARS. Return the resulting polynomial or list of
378polynomials. Standard arithmetical operators in form EXPR are
379replaced with their analogues in the ring of polynomials, and the
380resulting expression is evaluated, resulting in a polynomial or a list
381of polynomials in internal form. A similar operation in another computer
382algebra system could be called 'expand' or so."
383 (declare (type ring ring))
384 (labels ((p-eval (arg) (poly-eval arg vars ring order))
385 (p-eval-scalar (arg) (poly-eval-scalar arg))
386 (p-eval-list (args) (mapcar #'p-eval args))
387 (p-add (x y) (poly-add ring-and-order x y)))
388 (cond
389 ((null expr) (error "Empty expression"))
390 ((eql expr 0) (make-poly-zero))
391 ((member expr vars :test #'equalp)
392 (let ((pos (position expr vars :test #'equalp)))
393 (make-poly-variable ring (length vars) pos)))
394 ((atom expr)
395 (coerce-coeff ring expr vars))
396 ((eq (car expr) list-marker)
397 (cons list-marker (p-eval-list (cdr expr))))
398 (t
399 (case (car expr)
400 (+ (reduce #'p-add (p-eval-list (cdr expr))))
401 (- (case (length expr)
402 (1 (make-poly-zero))
403 (2 (poly-uminus ring (p-eval (cadr expr))))
404 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
405 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
406 (reduce #'p-add (p-eval-list (cddr expr)))))))
407 (*
408 (if (endp (cddr expr)) ;unary
409 (p-eval (cdr expr))
410 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
411 (/
412 ;; A polynomial can be divided by a scalar
413 (cond
414 ((endp (cddr expr))
415 ;; A special case (/ ?), the inverse
416 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
417 (t
418 (let ((num (p-eval (cadr expr)))
419 (denom-inverse (apply (ring-div ring)
420 (cons (funcall (ring-unit ring))
421 (mapcar #'p-eval-scalar (cddr expr))))))
422 (scalar-times-poly ring denom-inverse num)))))
423 (expt
424 (cond
425 ((member (cadr expr) vars :test #'equalp)
426 ;;Special handling of (expt var pow)
427 (let ((pos (position (cadr expr) vars :test #'equalp)))
428 (make-poly-variable ring (length vars) pos (caddr expr))))
429 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
430 ;; Negative power means division in coefficient ring
431 ;; Non-integer power means non-polynomial coefficient
432 (coerce-coeff ring expr vars))
433 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
434 (otherwise
435 (coerce-coeff ring expr vars)))))))
436
437(defun poly-eval-scalar (expr
438 &optional
439 (ring +ring-of-integers+)
440 &aux
441 (order #'lex>))
442 "Evaluate a scalar expression EXPR in ring RING."
443 (declare (type ring ring))
444 (poly-lc (poly-eval expr nil ring order)))
445
446(defun spoly (ring-and-order f g
447 &aux
448 (ring (ro-ring ring-and-order)))
449 "It yields the S-polynomial of polynomials F and G."
450 (declare (type ring-and-order ring-and-order) (type poly f g))
451 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
452 (mf (monom-div lcm (poly-lm f)))
453 (mg (monom-div lcm (poly-lm g))))
454 (declare (type monom mf mg))
455 (multiple-value-bind (c cf cg)
456 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
457 (declare (ignore c))
458 (poly-sub
459 ring-and-order
460 (scalar-times-poly ring cg (monom-times-poly mf f))
461 (scalar-times-poly ring cf (monom-times-poly mg g))))))
462
463
464(defun poly-primitive-part (ring p)
465 "Divide polynomial P with integer coefficients by gcd of its
466coefficients and return the result."
467 (declare (type ring ring) (type poly p))
468 (if (poly-zerop p)
469 (values p 1)
470 (let ((c (poly-content ring p)))
471 (values (make-poly-from-termlist
472 (mapcar
473 #'(lambda (x)
474 (make-term :monom (term-monom x)
475 :coeff (funcall (ring-div ring) (term-coeff x) c)))
476 (poly-termlist p))
477 (poly-sugar p))
478 c))))
479
480(defun poly-content (ring p)
481 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
482to compute the greatest common divisor."
483 (declare (type ring ring) (type poly p))
484 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
485
486(defun read-infix-form (&key (stream t))
487 "Parser of infix expressions with integer/rational coefficients
488The parser will recognize two kinds of polynomial expressions:
489
490- polynomials in fully expanded forms with coefficients
491 written in front of symbolic expressions; constants can be optionally
492 enclosed in (); for example, the infix form
493 X^2-Y^2+(-4/3)*U^2*W^3-5
494 parses to
495 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
496
497- lists of polynomials; for example
498 [X-Y, X^2+3*Z]
499 parses to
500 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
501 where the first symbol [ marks a list of polynomials.
502
503-other infix expressions, for example
504 [(X-Y)*(X+Y)/Z,(X+1)^2]
505parses to:
506 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
507Currently this function is implemented using M. Kantrowitz's INFIX package."
508 (read-from-string
509 (concatenate 'string
510 "#I("
511 (with-output-to-string (s)
512 (loop
513 (multiple-value-bind (line eof)
514 (read-line stream t)
515 (format s "~A" line)
516 (when eof (return)))))
517 ")")))
518
519(defun read-poly (vars &key
520 (stream t)
521 (ring +ring-of-integers+)
522 (order #'lex>))
523 "Reads an expression in prefix form from a stream STREAM.
524The expression read from the strem should represent a polynomial or a
525list of polynomials in variables VARS, over the ring RING. The
526polynomial or list of polynomials is returned, with terms in each
527polynomial ordered according to monomial order ORDER."
528 (poly-eval (read-infix-form :stream stream) vars ring order))
529
530(defun string->poly (str vars
531 &optional
532 (ring +ring-of-integers+)
533 (order #'lex>))
534 "Converts a string STR to a polynomial in variables VARS."
535 (with-input-from-string (s str)
536 (read-poly vars :stream s :ring ring :order order)))
537
538(defun poly->alist (p)
539 "Convert a polynomial P to an association list. Thus, the format of the
540returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
541MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
542corresponding coefficient in the ring."
543 (cond
544 ((poly-p p)
545 (mapcar #'term->cons (poly-termlist p)))
546 ((and (consp p) (eq (car p) :[))
547 (cons :[ (mapcar #'poly->alist (cdr p))))))
548
549(defun string->alist (str vars
550 &optional
551 (ring +ring-of-integers+)
552 (order #'lex>))
553 "Convert a string STR representing a polynomial or polynomial list to
554an association list (... (MONOM . COEFF) ...)."
555 (poly->alist (string->poly str vars ring order)))
556
557(defun poly-equal-no-sugar-p (p q)
558 "Compare polynomials for equality, ignoring sugar."
559 (declare (type poly p q))
560 (equalp (poly-termlist p) (poly-termlist q)))
561
562(defun poly-set-equal-no-sugar-p (p q)
563 "Compare polynomial sets P and Q for equality, ignoring sugar."
564 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
565
566(defun poly-list-equal-no-sugar-p (p q)
567 "Compare polynomial lists P and Q for equality, ignoring sugar."
568 (every #'poly-equal-no-sugar-p p q))
569|#
Note: See TracBrowser for help on using the repository browser.