close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 3053

Last change on this file since 3053 was 3050, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 19.0 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER"
27 "CHANGE-TERM-ORDER")
28 (:documentation "Implements polynomials"))
29
30(in-package :polynomial)
31
32(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
33
34(defclass poly ()
35 ((termlist :initarg :termlist :accessor poly-termlist
36 :documentation "List of terms.")
37 (order :initarg :order :accessor poly-term-order
38 :documentation "Monomial/term order."))
39 (:default-initargs :termlist nil :order #'lex>)
40 (:documentation "A polynomial with a list of terms TERMLIST, ordered
41according to term order ORDER, which defaults to LEX>."))
42
43(defmethod print-object ((self poly) stream)
44 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
45 (poly-termlist self)
46 (poly-term-order self)))
47
48(defgeneric change-term-order (self other)
49 (:documentation "Change term order of SELF to the term order of OTHER.")
50 (:method ((self poly) (other poly))
51 (unless (eq (poly-term-order self) (poly-term-order other))
52 (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
53 (poly-term-order self) (poly-term-order other)))
54 self))
55
56(defmethod r-equalp ((self poly) (other poly))
57 "POLY instances are R-EQUALP if they have the same
58order and if all terms are R-EQUALP."
59 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
60 (eq (poly-term-order self) (poly-term-order other))))
61
62(defmethod insert-item ((self poly) (item term))
63 (push item (poly-termlist self))
64 self)
65
66(defmethod append-item ((self poly) (item term))
67 (setf (cdr (last (poly-termlist self))) (list item))
68 self)
69
70;; Leading term
71(defgeneric leading-term (object)
72 (:method ((self poly))
73 (car (poly-termlist self)))
74 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
75
76;; Second term
77(defgeneric second-leading-term (object)
78 (:method ((self poly))
79 (cadar (poly-termlist self)))
80 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
81
82;; Leading coefficient
83(defgeneric leading-coefficient (object)
84 (:method ((self poly))
85 (r-coeff (leading-term self)))
86 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
87
88;; Second coefficient
89(defgeneric second-leading-coefficient (object)
90 (:method ((self poly))
91 (r-coeff (second-leading-term self)))
92 (:documentation "The second leading coefficient of a polynomial. It
93 signals error for a polynomial with at most one term."))
94
95;; Testing for a zero polynomial
96(defmethod r-zerop ((self poly))
97 (null (poly-termlist self)))
98
99;; The number of terms
100(defmethod r-length ((self poly))
101 (length (poly-termlist self)))
102
103(defmethod multiply-by ((self poly) (other monom))
104 (mapc #'(lambda (term) (multiply-by term other))
105 (poly-termlist self))
106 self)
107
108(defmethod multiply-by ((self poly) (other scalar))
109 (mapc #'(lambda (term) (multiply-by term other))
110 (poly-termlist self))
111 self)
112
113
114(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
115 "Return an expression which will efficiently adds/subtracts two
116polynomials, P and Q. The addition/subtraction of coefficients is
117performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
118is supplied, it is used to negate the coefficients of Q which do not
119have a corresponding coefficient in P. The code implements an
120efficient algorithm to add two polynomials represented as sorted lists
121of terms. The code destroys both arguments, reusing the terms to build
122the result."
123 `(macrolet ((lc (x) `(r-coeff (car ,x))))
124 (do ((p ,p)
125 (q ,q)
126 r)
127 ((or (endp p) (endp q))
128 ;; NOTE: R contains the result in reverse order. Can it
129 ;; be more efficient to produce the terms in correct order?
130 (unless (endp q)
131 ;; Upon subtraction, we must change the sign of
132 ;; all coefficients in q
133 ,@(when uminus-fn
134 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
135 (setf r (nreconc r q)))
136 r)
137 (multiple-value-bind
138 (greater-p equal-p)
139 (funcall ,order-fn (car p) (car q))
140 (cond
141 (greater-p
142 (rotatef (cdr p) r p)
143 )
144 (equal-p
145 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
146 (cond
147 ((r-zerop s)
148 (setf p (cdr p))
149 )
150 (t
151 (setf (lc p) s)
152 (rotatef (cdr p) r p))))
153 (setf q (cdr q))
154 )
155 (t
156 ;;Negate the term of Q if UMINUS provided, signallig
157 ;;that we are doing subtraction
158 ,(when uminus-fn
159 `(setf (lc q) (funcall ,uminus-fn (lc q))))
160 (rotatef (cdr q) r q)))))))
161
162
163(defmacro def-add/subtract-method (add/subtract-method-name
164 uminus-method-name
165 &optional
166 (doc-string nil doc-string-supplied-p))
167 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
168 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
169 ,@(when doc-string-supplied-p `(,doc-string))
170 ;; Ensure orders are compatible
171 (change-term-order other self)
172 (setf (poly-termlist self) (fast-add/subtract
173 (poly-termlist self) (poly-termlist other)
174 (poly-term-order self)
175 #',add/subtract-method-name
176 ,(when uminus-method-name `(function ,uminus-method-name))))
177 self))
178
179(eval-when (:compile-toplevel :load-toplevel :execute)
180
181 (def-add/subtract-method add-to nil
182 "Adds to polynomial SELF another polynomial OTHER.
183This operation destructively modifies both polynomials.
184The result is stored in SELF. This implementation does
185no consing, entirely reusing the sells of SELF and OTHER.")
186
187 (def-add/subtract-method subtract-from unary-minus
188 "Subtracts from polynomial SELF another polynomial OTHER.
189This operation destructively modifies both polynomials.
190The result is stored in SELF. This implementation does
191no consing, entirely reusing the sells of SELF and OTHER.")
192
193 )
194
195
196
197(defmethod unary-minus ((self poly))
198 "Destructively modifies the coefficients of the polynomial SELF,
199by changing their sign."
200 (mapc #'unary-minus (poly-termlist self))
201 self)
202
203(defun add-termlists (p q order-fn)
204 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
205 (fast-add/subtract p q order-fn #'add-to nil))
206
207(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
208 &optional (reverse-arg-order-P nil))
209 "Multiplies term TERM by a list of term, TERMLIST.
210Takes into accound divisors of zero in the ring, by
211deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
212is T, change the order of arguments; this may be important
213if we extend the package to non-commutative rings."
214 `(mapcan #'(lambda (other-term)
215 (let ((prod (r*
216 ,@(cond
217 (reverse-arg-order-p
218 `(other-term ,term))
219 (t
220 `(,term other-term))))))
221 (cond
222 ((r-zerop prod) nil)
223 (t (list prod)))))
224 ,termlist))
225
226(defun multiply-termlists (p q order-fn)
227 (cond
228 ((or (endp p) (endp q))
229 ;;p or q is 0 (represented by NIL)
230 nil)
231 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
232 ((endp (cdr p))
233 (multiply-term-by-termlist-dropping-zeros (car p) q))
234 ((endp (cdr q))
235 (multiply-term-by-termlist-dropping-zeros (car q) p t))
236 (t
237 (cons (r* (car p) (car q))
238 (add-termlists
239 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
240 (multiply-termlists (cdr p) q order-fn)
241 order-fn)))))
242
243(defmethod multiply-by ((self poly) (other poly))
244 (change-term-order other self)
245 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
246 (poly-termlist other)
247 (poly-term-order self)))
248 self)
249
250(defmethod r* ((poly1 poly) (poly2 poly))
251 "Non-destructively multiply POLY1 by POLY2."
252 (multiply-by (copy-instance POLY1) (copy-instance POLY2)))
253
254(defmethod left-tensor-product-by ((self poly) (other term))
255 (setf (poly-termlist self)
256 (mapcan #'(lambda (term)
257 (let ((prod (left-tensor-product-by term other)))
258 (cond
259 ((r-zerop prod) nil)
260 (t (list prod)))))
261 (poly-termlist self)))
262 self)
263
264(defmethod right-tensor-product-by ((self poly) (other term))
265 (setf (poly-termlist self)
266 (mapcan #'(lambda (term)
267 (let ((prod (right-tensor-product-by term other)))
268 (cond
269 ((r-zerop prod) nil)
270 (t (list prod)))))
271 (poly-termlist self)))
272 self)
273
274
275(defun poly-standard-extension (plist &aux (k (length plist)))
276 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
277is a list of polynomials."
278 (declare (list plist) (fixnum k))
279 (labels ((incf-power (g i)
280 (dolist (x (poly-termlist g))
281 (incf (monom-elt (term-monom x) i)))
282 (incf (poly-sugar g))))
283 (setf plist (poly-list-add-variables plist k))
284 (dotimes (i k plist)
285 (incf-power (nth i plist) i))))
286
287#|
288
289(defun saturation-extension (ring f plist
290 &aux
291 (k (length plist))
292 (d (monom-dimension (poly-lm (car plist))))
293 f-x plist-x)
294 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
295 (declare (type ring ring))
296 (setf f-x (poly-list-add-variables f k)
297 plist-x (mapcar #'(lambda (x)
298 (setf (poly-termlist x)
299 (nconc (poly-termlist x)
300 (list (make-term :monom (make-monom :dimension d)
301 :coeff (funcall (ring-uminus ring)
302 (funcall (ring-unit ring)))))))
303 x)
304 (poly-standard-extension plist)))
305 (append f-x plist-x))
306
307
308(defun polysaturation-extension (ring f plist
309 &aux
310 (k (length plist))
311 (d (+ k (monom-dimension (poly-lm (car plist)))))
312 ;; Add k variables to f
313 (f (poly-list-add-variables f k))
314 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
315 (plist (apply #'poly-append (poly-standard-extension plist))))
316 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
317 ;; Add -1 as the last term
318 (declare (type ring ring))
319 (setf (cdr (last (poly-termlist plist)))
320 (list (make-term :monom (make-monom :dimension d)
321 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
322 (append f (list plist)))
323
324(defun saturation-extension-1 (ring f p)
325 "Calculate [F, U*P-1]. It destructively modifies F."
326 (declare (type ring ring))
327 (polysaturation-extension ring f (list p)))
328
329;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
330;;
331;; Evaluation of polynomial (prefix) expressions
332;;
333;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
334
335(defun coerce-coeff (ring expr vars)
336 "Coerce an element of the coefficient ring to a constant polynomial."
337 ;; Modular arithmetic handler by rat
338 (declare (type ring ring))
339 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
340 :coeff (funcall (ring-parse ring) expr)))
341 0))
342
343(defun poly-eval (expr vars
344 &optional
345 (ring +ring-of-integers+)
346 (order #'lex>)
347 (list-marker :[)
348 &aux
349 (ring-and-order (make-ring-and-order :ring ring :order order)))
350 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
351variables VARS. Return the resulting polynomial or list of
352polynomials. Standard arithmetical operators in form EXPR are
353replaced with their analogues in the ring of polynomials, and the
354resulting expression is evaluated, resulting in a polynomial or a list
355of polynomials in internal form. A similar operation in another computer
356algebra system could be called 'expand' or so."
357 (declare (type ring ring))
358 (labels ((p-eval (arg) (poly-eval arg vars ring order))
359 (p-eval-scalar (arg) (poly-eval-scalar arg))
360 (p-eval-list (args) (mapcar #'p-eval args))
361 (p-add (x y) (poly-add ring-and-order x y)))
362 (cond
363 ((null expr) (error "Empty expression"))
364 ((eql expr 0) (make-poly-zero))
365 ((member expr vars :test #'equalp)
366 (let ((pos (position expr vars :test #'equalp)))
367 (make-poly-variable ring (length vars) pos)))
368 ((atom expr)
369 (coerce-coeff ring expr vars))
370 ((eq (car expr) list-marker)
371 (cons list-marker (p-eval-list (cdr expr))))
372 (t
373 (case (car expr)
374 (+ (reduce #'p-add (p-eval-list (cdr expr))))
375 (- (case (length expr)
376 (1 (make-poly-zero))
377 (2 (poly-uminus ring (p-eval (cadr expr))))
378 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
379 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
380 (reduce #'p-add (p-eval-list (cddr expr)))))))
381 (*
382 (if (endp (cddr expr)) ;unary
383 (p-eval (cdr expr))
384 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
385 (/
386 ;; A polynomial can be divided by a scalar
387 (cond
388 ((endp (cddr expr))
389 ;; A special case (/ ?), the inverse
390 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
391 (t
392 (let ((num (p-eval (cadr expr)))
393 (denom-inverse (apply (ring-div ring)
394 (cons (funcall (ring-unit ring))
395 (mapcar #'p-eval-scalar (cddr expr))))))
396 (scalar-times-poly ring denom-inverse num)))))
397 (expt
398 (cond
399 ((member (cadr expr) vars :test #'equalp)
400 ;;Special handling of (expt var pow)
401 (let ((pos (position (cadr expr) vars :test #'equalp)))
402 (make-poly-variable ring (length vars) pos (caddr expr))))
403 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
404 ;; Negative power means division in coefficient ring
405 ;; Non-integer power means non-polynomial coefficient
406 (coerce-coeff ring expr vars))
407 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
408 (otherwise
409 (coerce-coeff ring expr vars)))))))
410
411(defun poly-eval-scalar (expr
412 &optional
413 (ring +ring-of-integers+)
414 &aux
415 (order #'lex>))
416 "Evaluate a scalar expression EXPR in ring RING."
417 (declare (type ring ring))
418 (poly-lc (poly-eval expr nil ring order)))
419
420(defun spoly (ring-and-order f g
421 &aux
422 (ring (ro-ring ring-and-order)))
423 "It yields the S-polynomial of polynomials F and G."
424 (declare (type ring-and-order ring-and-order) (type poly f g))
425 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
426 (mf (monom-div lcm (poly-lm f)))
427 (mg (monom-div lcm (poly-lm g))))
428 (declare (type monom mf mg))
429 (multiple-value-bind (c cf cg)
430 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
431 (declare (ignore c))
432 (poly-sub
433 ring-and-order
434 (scalar-times-poly ring cg (monom-times-poly mf f))
435 (scalar-times-poly ring cf (monom-times-poly mg g))))))
436
437
438(defun poly-primitive-part (ring p)
439 "Divide polynomial P with integer coefficients by gcd of its
440coefficients and return the result."
441 (declare (type ring ring) (type poly p))
442 (if (poly-zerop p)
443 (values p 1)
444 (let ((c (poly-content ring p)))
445 (values (make-poly-from-termlist
446 (mapcar
447 #'(lambda (x)
448 (make-term :monom (term-monom x)
449 :coeff (funcall (ring-div ring) (term-coeff x) c)))
450 (poly-termlist p))
451 (poly-sugar p))
452 c))))
453
454(defun poly-content (ring p)
455 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
456to compute the greatest common divisor."
457 (declare (type ring ring) (type poly p))
458 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
459
460(defun read-infix-form (&key (stream t))
461 "Parser of infix expressions with integer/rational coefficients
462The parser will recognize two kinds of polynomial expressions:
463
464- polynomials in fully expanded forms with coefficients
465 written in front of symbolic expressions; constants can be optionally
466 enclosed in (); for example, the infix form
467 X^2-Y^2+(-4/3)*U^2*W^3-5
468 parses to
469 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
470
471- lists of polynomials; for example
472 [X-Y, X^2+3*Z]
473 parses to
474 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
475 where the first symbol [ marks a list of polynomials.
476
477-other infix expressions, for example
478 [(X-Y)*(X+Y)/Z,(X+1)^2]
479parses to:
480 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
481Currently this function is implemented using M. Kantrowitz's INFIX package."
482 (read-from-string
483 (concatenate 'string
484 "#I("
485 (with-output-to-string (s)
486 (loop
487 (multiple-value-bind (line eof)
488 (read-line stream t)
489 (format s "~A" line)
490 (when eof (return)))))
491 ")")))
492
493(defun read-poly (vars &key
494 (stream t)
495 (ring +ring-of-integers+)
496 (order #'lex>))
497 "Reads an expression in prefix form from a stream STREAM.
498The expression read from the strem should represent a polynomial or a
499list of polynomials in variables VARS, over the ring RING. The
500polynomial or list of polynomials is returned, with terms in each
501polynomial ordered according to monomial order ORDER."
502 (poly-eval (read-infix-form :stream stream) vars ring order))
503
504(defun string->poly (str vars
505 &optional
506 (ring +ring-of-integers+)
507 (order #'lex>))
508 "Converts a string STR to a polynomial in variables VARS."
509 (with-input-from-string (s str)
510 (read-poly vars :stream s :ring ring :order order)))
511
512(defun poly->alist (p)
513 "Convert a polynomial P to an association list. Thus, the format of the
514returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
515MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
516corresponding coefficient in the ring."
517 (cond
518 ((poly-p p)
519 (mapcar #'term->cons (poly-termlist p)))
520 ((and (consp p) (eq (car p) :[))
521 (cons :[ (mapcar #'poly->alist (cdr p))))))
522
523(defun string->alist (str vars
524 &optional
525 (ring +ring-of-integers+)
526 (order #'lex>))
527 "Convert a string STR representing a polynomial or polynomial list to
528an association list (... (MONOM . COEFF) ...)."
529 (poly->alist (string->poly str vars ring order)))
530
531(defun poly-equal-no-sugar-p (p q)
532 "Compare polynomials for equality, ignoring sugar."
533 (declare (type poly p q))
534 (equalp (poly-termlist p) (poly-termlist q)))
535
536(defun poly-set-equal-no-sugar-p (p q)
537 "Compare polynomial sets P and Q for equality, ignoring sugar."
538 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
539
540(defun poly-list-equal-no-sugar-p (p q)
541 "Compare polynomial lists P and Q for equality, ignoring sugar."
542 (every #'poly-equal-no-sugar-p p q))
543|#
Note: See TracBrowser for help on using the repository browser.