1 | ;;; -*- Mode: Lisp -*-
|
---|
2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
3 | ;;;
|
---|
4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
5 | ;;;
|
---|
6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
9 | ;;; (at your option) any later version.
|
---|
10 | ;;;
|
---|
11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | ;;; GNU General Public License for more details.
|
---|
15 | ;;;
|
---|
16 | ;;; You should have received a copy of the GNU General Public License
|
---|
17 | ;;; along with this program; if not, write to the Free Software
|
---|
18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
19 | ;;;
|
---|
20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
21 |
|
---|
22 | (defpackage "POLYNOMIAL"
|
---|
23 | (:use :cl :ring :monom :order :term #| :infix |# )
|
---|
24 | (:export "POLY"
|
---|
25 | "POLY-TERMLIST"
|
---|
26 | "POLY-TERM-ORDER")
|
---|
27 | (:documentation "Implements polynomials"))
|
---|
28 |
|
---|
29 | (in-package :polynomial)
|
---|
30 |
|
---|
31 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
|
---|
32 |
|
---|
33 | (defclass poly ()
|
---|
34 | ((termlist :initarg :termlist :accessor poly-termlist
|
---|
35 | :documentation "List of terms.")
|
---|
36 | (order :initarg :order :accessor poly-term-order
|
---|
37 | :documentation "Monomial/term order."))
|
---|
38 | (:default-initargs :termlist nil :order #'lex>)
|
---|
39 | (:documentation "A polynomial with a list of terms TERMLIST, ordered
|
---|
40 | according to term order ORDER, which defaults to LEX>."))
|
---|
41 |
|
---|
42 | (defmethod print-object ((self poly) stream)
|
---|
43 | (format stream "#<POLY TERMLIST=~A ORDER=~A>"
|
---|
44 | (poly-termlist self)
|
---|
45 | (poly-term-order self)))
|
---|
46 |
|
---|
47 | (defgeneric change-order (self other)
|
---|
48 | (:documentation "Change term order of SELF to the term order of OTHER."
|
---|
49 | (:method ((self poly) (other poly))
|
---|
50 | (unless (eq (poly-term-order self) (poly-term-order other))
|
---|
51 | (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
|
---|
52 | (poly-term-order self) (poly-term-order other)))
|
---|
53 | self)))
|
---|
54 |
|
---|
55 | (defmethod r-equalp ((self poly) (other poly))
|
---|
56 | "POLY instances are R-EQUALP if they have the same
|
---|
57 | order and if all terms are R-EQUALP."
|
---|
58 | (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
|
---|
59 | (eq (poly-term-order self) (poly-term-order other))))
|
---|
60 |
|
---|
61 | (defmethod insert-item ((self poly) (item term))
|
---|
62 | (push item (poly-termlist self))
|
---|
63 | self)
|
---|
64 |
|
---|
65 | (defmethod append-item ((self poly) (item term))
|
---|
66 | (setf (cdr (last (poly-termlist self))) (list item))
|
---|
67 | self)
|
---|
68 |
|
---|
69 | ;; Leading term
|
---|
70 | (defgeneric leading-term (object)
|
---|
71 | (:method ((self poly))
|
---|
72 | (car (poly-termlist self)))
|
---|
73 | (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
|
---|
74 |
|
---|
75 | ;; Second term
|
---|
76 | (defgeneric second-leading-term (object)
|
---|
77 | (:method ((self poly))
|
---|
78 | (cadar (poly-termlist self)))
|
---|
79 | (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
|
---|
80 |
|
---|
81 | ;; Leading coefficient
|
---|
82 | (defgeneric leading-coefficient (object)
|
---|
83 | (:method ((self poly))
|
---|
84 | (r-coeff (leading-term self)))
|
---|
85 | (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
|
---|
86 |
|
---|
87 | ;; Second coefficient
|
---|
88 | (defgeneric second-leading-coefficient (object)
|
---|
89 | (:method ((self poly))
|
---|
90 | (r-coeff (second-leading-term self)))
|
---|
91 | (:documentation "The second leading coefficient of a polynomial. It
|
---|
92 | signals error for a polynomial with at most one term."))
|
---|
93 |
|
---|
94 | ;; Testing for a zero polynomial
|
---|
95 | (defmethod r-zerop ((self poly))
|
---|
96 | (null (poly-termlist self)))
|
---|
97 |
|
---|
98 | ;; The number of terms
|
---|
99 | (defmethod r-length ((self poly))
|
---|
100 | (length (poly-termlist self)))
|
---|
101 |
|
---|
102 | (defmethod multiply-by ((self poly) (other monom))
|
---|
103 | (mapc #'(lambda (term) (multiply-by term other))
|
---|
104 | (poly-termlist self))
|
---|
105 | self)
|
---|
106 |
|
---|
107 | (defmethod multiply-by ((self poly) (other scalar))
|
---|
108 | (mapc #'(lambda (term) (multiply-by term other))
|
---|
109 | (poly-termlist self))
|
---|
110 | self)
|
---|
111 |
|
---|
112 |
|
---|
113 | (defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
|
---|
114 | "Return an expression which will efficiently adds/subtracts two
|
---|
115 | polynomials, P and Q. The addition/subtraction of coefficients is
|
---|
116 | performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
|
---|
117 | is supplied, it is used to negate the coefficients of Q which do not
|
---|
118 | have a corresponding coefficient in P. The code implements an
|
---|
119 | efficient algorithm to add two polynomials represented as sorted lists
|
---|
120 | of terms. The code destroys both arguments, reusing the terms to build
|
---|
121 | the result."
|
---|
122 | `(macrolet ((lc (x) `(r-coeff (car ,x))))
|
---|
123 | (do ((p ,p)
|
---|
124 | (q ,q)
|
---|
125 | r)
|
---|
126 | ((or (endp p) (endp q))
|
---|
127 | ;; NOTE: R contains the result in reverse order. Can it
|
---|
128 | ;; be more efficient to produce the terms in correct order?
|
---|
129 | (unless (endp q)
|
---|
130 | ;; Upon subtraction, we must change the sign of
|
---|
131 | ;; all coefficients in q
|
---|
132 | ,@(when uminus-fn
|
---|
133 | `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
|
---|
134 | (setf r (nreconc r q)))
|
---|
135 | r)
|
---|
136 | (multiple-value-bind
|
---|
137 | (greater-p equal-p)
|
---|
138 | (funcall ,order-fn (car p) (car q))
|
---|
139 | (cond
|
---|
140 | (greater-p
|
---|
141 | (rotatef (cdr p) r p)
|
---|
142 | )
|
---|
143 | (equal-p
|
---|
144 | (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
|
---|
145 | (cond
|
---|
146 | ((r-zerop s)
|
---|
147 | (setf p (cdr p))
|
---|
148 | )
|
---|
149 | (t
|
---|
150 | (setf (lc p) s)
|
---|
151 | (rotatef (cdr p) r p))))
|
---|
152 | (setf q (cdr q))
|
---|
153 | )
|
---|
154 | (t
|
---|
155 | ;;Negate the term of Q if UMINUS provided, signallig
|
---|
156 | ;;that we are doing subtraction
|
---|
157 | ,(when uminus-fn
|
---|
158 | `(setf (lc q) (funcall ,uminus-fn (lc q))))
|
---|
159 | (rotatef (cdr q) r q)))))))
|
---|
160 |
|
---|
161 |
|
---|
162 | (defmacro def-add/subtract-method (add/subtract-method-name
|
---|
163 | uminus-method-name
|
---|
164 | &optional
|
---|
165 | (doc-string nil doc-string-supplied-p))
|
---|
166 | "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
|
---|
167 | `(defmethod ,add/subtract-method-name ((self poly) (other poly))
|
---|
168 | ,@(when doc-string-supplied-p `(,doc-string))
|
---|
169 | ;; Ensure orders are compatible
|
---|
170 | (unless (eq (poly-term-order self) (poly-term-order other))
|
---|
171 | (setf (poly-termlist other) (sort (poly-termlist other) (poly-term-order self))
|
---|
172 | (poly-term-order other) (poly-term-order self)))
|
---|
173 | (setf (poly-termlist self) (fast-add/subtract
|
---|
174 | (poly-termlist self) (poly-termlist other)
|
---|
175 | (poly-term-order self)
|
---|
176 | #',add/subtract-method-name
|
---|
177 | ,(when uminus-method-name `(function ,uminus-method-name))))
|
---|
178 | self))
|
---|
179 |
|
---|
180 | (eval-when (:compile-toplevel :load-toplevel :execute)
|
---|
181 |
|
---|
182 | (def-add/subtract-method add-to nil
|
---|
183 | "Adds to polynomial SELF another polynomial OTHER.
|
---|
184 | This operation destructively modifies both polynomials.
|
---|
185 | The result is stored in SELF. This implementation does
|
---|
186 | no consing, entirely reusing the sells of SELF and OTHER.")
|
---|
187 |
|
---|
188 | (def-add/subtract-method subtract-from unary-minus
|
---|
189 | "Subtracts from polynomial SELF another polynomial OTHER.
|
---|
190 | This operation destructively modifies both polynomials.
|
---|
191 | The result is stored in SELF. This implementation does
|
---|
192 | no consing, entirely reusing the sells of SELF and OTHER.")
|
---|
193 |
|
---|
194 | )
|
---|
195 |
|
---|
196 |
|
---|
197 |
|
---|
198 | (defmethod unary-minus ((self poly))
|
---|
199 | "Destructively modifies the coefficients of the polynomial SELF,
|
---|
200 | by changing their sign."
|
---|
201 | (mapc #'unary-minus (poly-termlist self))
|
---|
202 | self)
|
---|
203 |
|
---|
204 | (defun add-termlists (p q order-fn)
|
---|
205 | "Destructively adds two termlists P and Q ordered according to ORDER-FN."
|
---|
206 | (fast-add/subtract p q order-fn #'add-to nil))
|
---|
207 |
|
---|
208 | (defmacro multiply-term-by-termlist-dropping-zeros (term termlist
|
---|
209 | &optional (reverse-arg-order-P nil))
|
---|
210 | "Multiplies term TERM by a list of term, TERMLIST.
|
---|
211 | Takes into accound divisors of zero in the ring, by
|
---|
212 | deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
|
---|
213 | is T, change the order of arguments; this may be important
|
---|
214 | if we extend the package to non-commutative rings."
|
---|
215 | `(mapcan #'(lambda (other-term)
|
---|
216 | (let ((prod (r*
|
---|
217 | ,@(cond
|
---|
218 | (reverse-arg-order-p
|
---|
219 | `(other-term ,term))
|
---|
220 | (t
|
---|
221 | `(,term other-term))))))
|
---|
222 | (cond
|
---|
223 | ((r-zerop prod) nil)
|
---|
224 | (t (list prod)))))
|
---|
225 | ,termlist))
|
---|
226 |
|
---|
227 | (defun multiply-termlists (p q order-fn)
|
---|
228 | (cond
|
---|
229 | ((or (endp p) (endp q))
|
---|
230 | ;;p or q is 0 (represented by NIL)
|
---|
231 | nil)
|
---|
232 | ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
|
---|
233 | ((endp (cdr p))
|
---|
234 | (multiply-term-by-termlist-dropping-zeros (car p) q))
|
---|
235 | ((endp (cdr q))
|
---|
236 | (multiply-term-by-termlist-dropping-zeros (car q) p t))
|
---|
237 | (t
|
---|
238 | (cons (r* (car p) (car q))
|
---|
239 | (add-termlists
|
---|
240 | (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
|
---|
241 | (multiply-termlists (cdr p) q order-fn)
|
---|
242 | order-fn)))))
|
---|
243 |
|
---|
244 |
|
---|
245 |
|
---|
246 | (defmethod multiply-by ((self poly) (other poly))
|
---|
247 | (unless (eq (poly-term-order self) (poly-term-order other))
|
---|
248 | (setf (poly-termlist other) (sort (poly-termlist other) (poly-term-order self))
|
---|
249 | (poly-term-order other) (poly-term-order self)))
|
---|
250 | (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
|
---|
251 | (poly-termlist other)
|
---|
252 | (poly-term-order self)))
|
---|
253 | self)
|
---|
254 |
|
---|
255 | (defmethod r* ((poly1 poly) (poly2 poly))
|
---|
256 | "Non-destructively multiply POLY1 by POLY2."
|
---|
257 | (multiply-by (copy-instance POLY1) (copy-instance POLY2)))
|
---|
258 |
|
---|
259 | #|
|
---|
260 |
|
---|
261 |
|
---|
262 | (defun poly-standard-extension (plist &aux (k (length plist)))
|
---|
263 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
|
---|
264 | is a list of polynomials."
|
---|
265 | (declare (list plist) (fixnum k))
|
---|
266 | (labels ((incf-power (g i)
|
---|
267 | (dolist (x (poly-termlist g))
|
---|
268 | (incf (monom-elt (term-monom x) i)))
|
---|
269 | (incf (poly-sugar g))))
|
---|
270 | (setf plist (poly-list-add-variables plist k))
|
---|
271 | (dotimes (i k plist)
|
---|
272 | (incf-power (nth i plist) i))))
|
---|
273 |
|
---|
274 |
|
---|
275 |
|
---|
276 | (defun saturation-extension (ring f plist
|
---|
277 | &aux
|
---|
278 | (k (length plist))
|
---|
279 | (d (monom-dimension (poly-lm (car plist))))
|
---|
280 | f-x plist-x)
|
---|
281 | "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
|
---|
282 | (declare (type ring ring))
|
---|
283 | (setf f-x (poly-list-add-variables f k)
|
---|
284 | plist-x (mapcar #'(lambda (x)
|
---|
285 | (setf (poly-termlist x)
|
---|
286 | (nconc (poly-termlist x)
|
---|
287 | (list (make-term :monom (make-monom :dimension d)
|
---|
288 | :coeff (funcall (ring-uminus ring)
|
---|
289 | (funcall (ring-unit ring)))))))
|
---|
290 | x)
|
---|
291 | (poly-standard-extension plist)))
|
---|
292 | (append f-x plist-x))
|
---|
293 |
|
---|
294 |
|
---|
295 | (defun polysaturation-extension (ring f plist
|
---|
296 | &aux
|
---|
297 | (k (length plist))
|
---|
298 | (d (+ k (monom-dimension (poly-lm (car plist)))))
|
---|
299 | ;; Add k variables to f
|
---|
300 | (f (poly-list-add-variables f k))
|
---|
301 | ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
|
---|
302 | (plist (apply #'poly-append (poly-standard-extension plist))))
|
---|
303 | "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
|
---|
304 | ;; Add -1 as the last term
|
---|
305 | (declare (type ring ring))
|
---|
306 | (setf (cdr (last (poly-termlist plist)))
|
---|
307 | (list (make-term :monom (make-monom :dimension d)
|
---|
308 | :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
|
---|
309 | (append f (list plist)))
|
---|
310 |
|
---|
311 | (defun saturation-extension-1 (ring f p)
|
---|
312 | "Calculate [F, U*P-1]. It destructively modifies F."
|
---|
313 | (declare (type ring ring))
|
---|
314 | (polysaturation-extension ring f (list p)))
|
---|
315 |
|
---|
316 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
317 | ;;
|
---|
318 | ;; Evaluation of polynomial (prefix) expressions
|
---|
319 | ;;
|
---|
320 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
321 |
|
---|
322 | (defun coerce-coeff (ring expr vars)
|
---|
323 | "Coerce an element of the coefficient ring to a constant polynomial."
|
---|
324 | ;; Modular arithmetic handler by rat
|
---|
325 | (declare (type ring ring))
|
---|
326 | (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
|
---|
327 | :coeff (funcall (ring-parse ring) expr)))
|
---|
328 | 0))
|
---|
329 |
|
---|
330 | (defun poly-eval (expr vars
|
---|
331 | &optional
|
---|
332 | (ring +ring-of-integers+)
|
---|
333 | (order #'lex>)
|
---|
334 | (list-marker :[)
|
---|
335 | &aux
|
---|
336 | (ring-and-order (make-ring-and-order :ring ring :order order)))
|
---|
337 | "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
|
---|
338 | variables VARS. Return the resulting polynomial or list of
|
---|
339 | polynomials. Standard arithmetical operators in form EXPR are
|
---|
340 | replaced with their analogues in the ring of polynomials, and the
|
---|
341 | resulting expression is evaluated, resulting in a polynomial or a list
|
---|
342 | of polynomials in internal form. A similar operation in another computer
|
---|
343 | algebra system could be called 'expand' or so."
|
---|
344 | (declare (type ring ring))
|
---|
345 | (labels ((p-eval (arg) (poly-eval arg vars ring order))
|
---|
346 | (p-eval-scalar (arg) (poly-eval-scalar arg))
|
---|
347 | (p-eval-list (args) (mapcar #'p-eval args))
|
---|
348 | (p-add (x y) (poly-add ring-and-order x y)))
|
---|
349 | (cond
|
---|
350 | ((null expr) (error "Empty expression"))
|
---|
351 | ((eql expr 0) (make-poly-zero))
|
---|
352 | ((member expr vars :test #'equalp)
|
---|
353 | (let ((pos (position expr vars :test #'equalp)))
|
---|
354 | (make-poly-variable ring (length vars) pos)))
|
---|
355 | ((atom expr)
|
---|
356 | (coerce-coeff ring expr vars))
|
---|
357 | ((eq (car expr) list-marker)
|
---|
358 | (cons list-marker (p-eval-list (cdr expr))))
|
---|
359 | (t
|
---|
360 | (case (car expr)
|
---|
361 | (+ (reduce #'p-add (p-eval-list (cdr expr))))
|
---|
362 | (- (case (length expr)
|
---|
363 | (1 (make-poly-zero))
|
---|
364 | (2 (poly-uminus ring (p-eval (cadr expr))))
|
---|
365 | (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
|
---|
366 | (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
|
---|
367 | (reduce #'p-add (p-eval-list (cddr expr)))))))
|
---|
368 | (*
|
---|
369 | (if (endp (cddr expr)) ;unary
|
---|
370 | (p-eval (cdr expr))
|
---|
371 | (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
|
---|
372 | (/
|
---|
373 | ;; A polynomial can be divided by a scalar
|
---|
374 | (cond
|
---|
375 | ((endp (cddr expr))
|
---|
376 | ;; A special case (/ ?), the inverse
|
---|
377 | (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
|
---|
378 | (t
|
---|
379 | (let ((num (p-eval (cadr expr)))
|
---|
380 | (denom-inverse (apply (ring-div ring)
|
---|
381 | (cons (funcall (ring-unit ring))
|
---|
382 | (mapcar #'p-eval-scalar (cddr expr))))))
|
---|
383 | (scalar-times-poly ring denom-inverse num)))))
|
---|
384 | (expt
|
---|
385 | (cond
|
---|
386 | ((member (cadr expr) vars :test #'equalp)
|
---|
387 | ;;Special handling of (expt var pow)
|
---|
388 | (let ((pos (position (cadr expr) vars :test #'equalp)))
|
---|
389 | (make-poly-variable ring (length vars) pos (caddr expr))))
|
---|
390 | ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
|
---|
391 | ;; Negative power means division in coefficient ring
|
---|
392 | ;; Non-integer power means non-polynomial coefficient
|
---|
393 | (coerce-coeff ring expr vars))
|
---|
394 | (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
|
---|
395 | (otherwise
|
---|
396 | (coerce-coeff ring expr vars)))))))
|
---|
397 |
|
---|
398 | (defun poly-eval-scalar (expr
|
---|
399 | &optional
|
---|
400 | (ring +ring-of-integers+)
|
---|
401 | &aux
|
---|
402 | (order #'lex>))
|
---|
403 | "Evaluate a scalar expression EXPR in ring RING."
|
---|
404 | (declare (type ring ring))
|
---|
405 | (poly-lc (poly-eval expr nil ring order)))
|
---|
406 |
|
---|
407 | (defun spoly (ring-and-order f g
|
---|
408 | &aux
|
---|
409 | (ring (ro-ring ring-and-order)))
|
---|
410 | "It yields the S-polynomial of polynomials F and G."
|
---|
411 | (declare (type ring-and-order ring-and-order) (type poly f g))
|
---|
412 | (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
|
---|
413 | (mf (monom-div lcm (poly-lm f)))
|
---|
414 | (mg (monom-div lcm (poly-lm g))))
|
---|
415 | (declare (type monom mf mg))
|
---|
416 | (multiple-value-bind (c cf cg)
|
---|
417 | (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
|
---|
418 | (declare (ignore c))
|
---|
419 | (poly-sub
|
---|
420 | ring-and-order
|
---|
421 | (scalar-times-poly ring cg (monom-times-poly mf f))
|
---|
422 | (scalar-times-poly ring cf (monom-times-poly mg g))))))
|
---|
423 |
|
---|
424 |
|
---|
425 | (defun poly-primitive-part (ring p)
|
---|
426 | "Divide polynomial P with integer coefficients by gcd of its
|
---|
427 | coefficients and return the result."
|
---|
428 | (declare (type ring ring) (type poly p))
|
---|
429 | (if (poly-zerop p)
|
---|
430 | (values p 1)
|
---|
431 | (let ((c (poly-content ring p)))
|
---|
432 | (values (make-poly-from-termlist
|
---|
433 | (mapcar
|
---|
434 | #'(lambda (x)
|
---|
435 | (make-term :monom (term-monom x)
|
---|
436 | :coeff (funcall (ring-div ring) (term-coeff x) c)))
|
---|
437 | (poly-termlist p))
|
---|
438 | (poly-sugar p))
|
---|
439 | c))))
|
---|
440 |
|
---|
441 | (defun poly-content (ring p)
|
---|
442 | "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
|
---|
443 | to compute the greatest common divisor."
|
---|
444 | (declare (type ring ring) (type poly p))
|
---|
445 | (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
|
---|
446 |
|
---|
447 | (defun read-infix-form (&key (stream t))
|
---|
448 | "Parser of infix expressions with integer/rational coefficients
|
---|
449 | The parser will recognize two kinds of polynomial expressions:
|
---|
450 |
|
---|
451 | - polynomials in fully expanded forms with coefficients
|
---|
452 | written in front of symbolic expressions; constants can be optionally
|
---|
453 | enclosed in (); for example, the infix form
|
---|
454 | X^2-Y^2+(-4/3)*U^2*W^3-5
|
---|
455 | parses to
|
---|
456 | (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
|
---|
457 |
|
---|
458 | - lists of polynomials; for example
|
---|
459 | [X-Y, X^2+3*Z]
|
---|
460 | parses to
|
---|
461 | (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
|
---|
462 | where the first symbol [ marks a list of polynomials.
|
---|
463 |
|
---|
464 | -other infix expressions, for example
|
---|
465 | [(X-Y)*(X+Y)/Z,(X+1)^2]
|
---|
466 | parses to:
|
---|
467 | (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
|
---|
468 | Currently this function is implemented using M. Kantrowitz's INFIX package."
|
---|
469 | (read-from-string
|
---|
470 | (concatenate 'string
|
---|
471 | "#I("
|
---|
472 | (with-output-to-string (s)
|
---|
473 | (loop
|
---|
474 | (multiple-value-bind (line eof)
|
---|
475 | (read-line stream t)
|
---|
476 | (format s "~A" line)
|
---|
477 | (when eof (return)))))
|
---|
478 | ")")))
|
---|
479 |
|
---|
480 | (defun read-poly (vars &key
|
---|
481 | (stream t)
|
---|
482 | (ring +ring-of-integers+)
|
---|
483 | (order #'lex>))
|
---|
484 | "Reads an expression in prefix form from a stream STREAM.
|
---|
485 | The expression read from the strem should represent a polynomial or a
|
---|
486 | list of polynomials in variables VARS, over the ring RING. The
|
---|
487 | polynomial or list of polynomials is returned, with terms in each
|
---|
488 | polynomial ordered according to monomial order ORDER."
|
---|
489 | (poly-eval (read-infix-form :stream stream) vars ring order))
|
---|
490 |
|
---|
491 | (defun string->poly (str vars
|
---|
492 | &optional
|
---|
493 | (ring +ring-of-integers+)
|
---|
494 | (order #'lex>))
|
---|
495 | "Converts a string STR to a polynomial in variables VARS."
|
---|
496 | (with-input-from-string (s str)
|
---|
497 | (read-poly vars :stream s :ring ring :order order)))
|
---|
498 |
|
---|
499 | (defun poly->alist (p)
|
---|
500 | "Convert a polynomial P to an association list. Thus, the format of the
|
---|
501 | returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
|
---|
502 | MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
|
---|
503 | corresponding coefficient in the ring."
|
---|
504 | (cond
|
---|
505 | ((poly-p p)
|
---|
506 | (mapcar #'term->cons (poly-termlist p)))
|
---|
507 | ((and (consp p) (eq (car p) :[))
|
---|
508 | (cons :[ (mapcar #'poly->alist (cdr p))))))
|
---|
509 |
|
---|
510 | (defun string->alist (str vars
|
---|
511 | &optional
|
---|
512 | (ring +ring-of-integers+)
|
---|
513 | (order #'lex>))
|
---|
514 | "Convert a string STR representing a polynomial or polynomial list to
|
---|
515 | an association list (... (MONOM . COEFF) ...)."
|
---|
516 | (poly->alist (string->poly str vars ring order)))
|
---|
517 |
|
---|
518 | (defun poly-equal-no-sugar-p (p q)
|
---|
519 | "Compare polynomials for equality, ignoring sugar."
|
---|
520 | (declare (type poly p q))
|
---|
521 | (equalp (poly-termlist p) (poly-termlist q)))
|
---|
522 |
|
---|
523 | (defun poly-set-equal-no-sugar-p (p q)
|
---|
524 | "Compare polynomial sets P and Q for equality, ignoring sugar."
|
---|
525 | (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
|
---|
526 |
|
---|
527 | (defun poly-list-equal-no-sugar-p (p q)
|
---|
528 | "Compare polynomial lists P and Q for equality, ignoring sugar."
|
---|
529 | (every #'poly-equal-no-sugar-p p q))
|
---|
530 | |#
|
---|